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This paper proposes several tests of restricted specification in nonparametric
instrumental regression. Based on series estimators, test statistics are estab-
lished that allow for tests of the general model against a parametric or nonpara-
metric specification as well as a test of exogeneity of the vector of regressors.
The tests’ asymptotic distributions under correct specification are derived and
their consistency against any alternative model is shown. Under a sequence
of local alternative hypotheses, the asymptotic distributions of the tests is de-
rived. Moreover, uniform consistency is established over a class of alternatives
whose distance to the null hypothesis shrinks appropriately as the sample size
increases. A Monte Carlo study examines finite sample performance of the test
statistics.
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1. Introduction

While parametric instrumental variables estimators are widely used in econometrics, its
nonparametric extension has not been introduced until the last decade. The study of non-
parametric instrumental regression models was initiated by Florens [2003] and Newey and
Powell [2003]. In these models, given a scalar dependent variable Y, a vector of regressors
Z, and a vector of instrumental variables W, the structural function ¢ satisfies

Y =¢(Z)+U with E[UW]=0 (1.1)
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for an error term U. Here, Z contains potentially endogenous entries, that is, E[U|Z] may
not be zero. Model (1.1) does not involve the a priori assumption that the structural
function is known up to finitely many parameters. By considering this nonparametric
model, we minimize the likelihood of misspecification. On the other hand, implementing
the nonparametric instrumental regression model can be challenging.

Nonparametric instrumental regression models have attracted increasing attention in the
econometric literature. For example, Ai and Chen [2003], Blundell et al. [2007], Chen
and Reifl [2011], Newey and Powell [2003] or Johannes and Schwarz [2010] consider sieve
minimum distance estimators of ¢, while Darolles et al. [2011], Hall and Horowitz [2005],
Gagliardini and Scaillet [2011] or Florens et al. [2011] study penalized least squares esti-
mators. When the methods of analysis are widened to include nonparametric techniques,
one must confront two mayor challenges. First, identification in model (1.1) requires far
stronger assumptions about the instrumental variables than for the parametric case (cf.
Newey and Powell [2003]). Second, the accuracy of any estimator of ¢ can be low, even
for large sample sizes. More precisely, Chen and Reif [2011] showed that for a large class
of joint distributions of (Z, W) only logarithmic rates of convergence can be obtained. The
reason for this slow convergence is that model (1.1) leads to an inverse problem which is il
posed in general, that is, the solution does not depend continuously on the data.

In light of the difficulties of estimating the nonparametric function ¢ in model (1.1), the
need for statistically justified model simplifications is paramount. We do not face an ill
posed inverse problem if a parametric structure of ¢ or exogeneity of Z can be justified. If
these model simplifications are not supported by the data, one might still be interested in
whether a smooth solution to model (1.1) exists and if some regressors could be omitted
from the structural function . These model simplifications have important potential since
they might increase the accuracy of estimators of ¢ or lower the required conditions imposed
on the instrumental variables to ensure identification.

In this work we present a new family of goodness-of-fit statistics which allows for several
restricted specification tests of the model (1.1). Our method can be used for testing either
a parametric or nonparametric specification. In addition, we perform a test of exogeneity
and of dimension reduction of the vector of regressors Z, that is, whether certain regressors
can be omitted from the structural function ¢. By a withdrawal of regressors which are
independent of the instrument, identification in the restricted model might be possible
although ¢ is not identified in the original model (1.1).

There is a large literature concerning hypothesis testing of restricted specification of re-
gression. In the context of conditional moment equation, Donald et al. [2003] and Tripathi
and Kitamura [2003] make use of empirical likelihood methods to test parametric restric-
tions of the structural function. In addition, Santos [2012] allows for different hypothesis
tests, such as a test of homogeneity. Based on kernel techniques, Horowitz [2006], Blundell
and Horowitz [2007], and Horowitz [2011] propose test statistics in which an additional
smoothing step (on the exogenous entries of Z) is carried out. Horowitz [2006] considers
a parametric specification test. Blundell and Horowitz [2007] establish a consistent test of
exogeneity of the vector of regressors Z, whereas Horowitz [2011] tests whether the endoge-
nous part of Z can be omitted from ¢. Gagliardini and Scaillet [2007] and Horowitz [2012]
develop nonparametric specification tests in an instrumental regression model. We like to
emphasize that their test cannot be applied to model (1.1) where some entries of Z might
be exogenous.

Our testing procedure is entirely based on series estimation and hence is easy to implement.
We use approximating functions to estimate the conditional moment restriction implied by



the model (1.1) where ¢ is replaced by an estimator under each conjectured hypothesis. It
is worth noting that by our methodology we can omit some assumptions typically found
in related literature, such as smoothness conditions on the joint distribution of (Z, W). In
addition, a Monte Carlo indicates that the finite sample power of our tests exceed that of
existing tests.

The paper is organized as follows. In Section 2, we start with a simple hypothesis test,
that is, whether ¢ coincides with a known function ¢g. We obtain the test’s asymptotic
distribution under the null hypothesis and its consistency against any fixed alternative
model. Moreover, we judge its power by considering linear local alternatives and establish
uniform consistency over a class of functions. In Sections 3-5 we consider a parametric
specification test, a test of exogeneity, and a nonparametric specification test. The goodness-
of-fit statistics are obtained by replacing ¢q in the statistic of Section 2 by an appropriate
estimator. In each case, the asymptotic distribution under correct specification and power
statements against alternative models are derived. In Section 6, we investigate the finite
sample properties of our tests by Monte Carlo simulations. All proofs can be found in the
appendix.

2. A simple hypothesis test

In this section, we propose a goodness-of-fit statistic for testing the hypothesis Hy : © = g,
where g is a known function, against the alternative ¢ # ¢o. We develop a test statistic
based on £2? distance. As we will see in the following chapters, it is sufficient to replace ¢ by
an appropriate estimator to allow for tests of the general model against other specifications.
We first give basic assumptions, then obtain the asymptotic distribution of the proposed
statistic, and further discuss its power and consistency properties.

2.1. Assumptions and notation.

The model revisited The nonparametric instrumental regression model (1.1) leads to a
linear operator equation. To be more precise, let us introduce the conditional expectation
operator T'¢ := E[¢(Z)|W] mapping £ = {¢ : E|p(2)|* < 0o} to L3, = {1 : E|p(W)|* <
oo}. Consequently, model (1.1) can be written as

g="Ty (2.1)

where the function g := E[Y'|W] belongs to £%,. Throughout the paper we assume that an
iid. n-sample of (Y, Z, W) from the model (1.1) is available.

Assumptions. Our test statistic based on a sequence of approximating functions { f;}i>1
in E%V. Let W denote the support of W and the marginal density of W by py. Let v be
a probability density function that is strictly positive on WW. We assume throughout the
paper that {f;};>1 forms an orthonormal basis in L2(R%) := {¢ : [¢*(s)v(s)ds < oo}
where d,, denotes the dimension of W. For instance, if W C [a, b] then a natural choice of
v would be v(w) = 1/(b— a) for w € [a,b] and zero otherwise.

AsSSUMPTION 1. There exist constants ng,m, > 1 such that (i) sup;sy [ |fi(s)[*v(s)ds < ny
and (ii) sup,,epy {pw(w)/v(w)} < np with v being strictly positive on W.

Assumption 1 (7) restricts the magnitude of the approximating functions {f;};>1 which is
necessary for our proof to determine the asymptotic behavior of our test statistic. This



assumption holds for sufficiently large 7y if the basis {f;};>1 is uniformly bounded, such
as trigonometric bases. Moreover, Assumption 1 () is satisfied by Hermite polynomials.
Assumption 1 (i7) is satisfied if, for instance, py /v is continuous and W is compact.

The results derived below involve assumptions on the conditional moments of the random
variables U given W gathered in the following assumption.

ASSUMPTION 2. There exists a constant o > 0 such that E[U*|W] < o*

The conditional moment condition on the error term U helps to establish the asymptotic
distribution of our test statistics. The following assumption ensures identification of ¢ in
the model (2.1).

ASSUMPTION 3. The conditional expectation operator T is nonsingular.

Under Assumption 3, the hypothesis Hy is equivalent to g = T'wg which is used to construct
our test statistic below. Note that the asymptotic results under null hypotheses considered
in Sections 2—4 hold true even if T is singular. If Assumption 3 fails, however, our test has
no power against alternative models whose structural function satisfies ¢ = g 4+ d with §
belonging to the null space of T.

We will see below that the power of our test can be increased by carrying out an additional
smoothing step. Therefore, we introduce a smoothing operator L mapping E%/V to E%/V. In
contrast to the unknown conditional expectation operator 7', which has to be estimated, the
operator L can be chosen by the econometrician. Let L have an eigenvalue decomposition
given by {le/ 2, fi}i=1. We allow in this paper for a wide range of smoothing operators.
In particular, L may be the identity operator, that is, no smoothing step is carried out.
We only require the following condition on the operator L determined by the sequence of
eigenvalues 7 = (7;);>1.

ASSUMPTION 4. The weighting sequence T is positive, nonincreasing, and satisfies 7 = 1.

Assumption 4 ensures that the operator L is nonsingular.

REMARK 2.1. Horowitz [2006], Blundell and Horowitz [2007], and Horovvltz [2011] consider
as a smoothing operator a Fredholm integral operator, that is, L¢(s fo t)dt for

some function ¢ € £2[0,1] = {¢ : fo #?(s)ds < 0o} and some kernel functlon Z [ ] — R.
In order to ensure Lo € L£2[0,1] it is sufficient to assume fo fo |6(s,t)?dsdt < oo. Let

{7']-1/ 2, fj}j=1 be the eigenvalue decomposition of L. By Parseval’s identity

/Ol/olw(s,t)\?dsdt:/ ij\fj |dS—ZTJ

where the right hand side is only finite if the sequence 7 decays sufficiently fast. In our case,
if we apply a smoothing operator L with Z]Oil 7; < oo then our test statistics converges
also to a weighted series of chi-squared random variables. In addition, we allow for a milder
degree of smoothing or no smoothing at all and show below that then asymptotic normality
of our test statistics can be obtained. ([l

Notation. For a matrix A we denote its transposed by A!, its inverse by A~!, and its
generalized inverse by A~. The euclidean norm is denoted by || - || which in case of a matrix
denotes the spectral norm, that is ||A|| = (trace(A’A))'/2. The norms on L% and L, are
denoted by |¢|% = E|¢(Z)|* for ¢ € L% and |93, = E|p(W)}? for ¢ € L?%,. The
k x k identity matrix is denoted by Ij. For a vector V' we write diag(V') for the diagonal



matrix with diagonal elements being the values of V. Moreover, e,,(Z) and f, (W) denote
random vectors with entries e;(Z) and f;(W), 1 < j < m, respectively. For any weighting
sequence w we introduce vectors e, (Z) and fi; (W) with entries e'(Z) = \/wje;(Z) and
fJ“’(W) = wifi(W), 1 < j < m. We write a, ~ b, when there exist constants c,c¢’ > 0
such that ¢b, < a, < b, for all sufficiently large n.

2.2. The test statistic and its asymptotic distribution

Nonsingularity of the conditional expectation operator T' and the smoothing operator L
implies that the null hypothesis Hy is equivalent to L(g — Tpo) = 0. Note that ||L(g —
To)|lw = 0 if and only if [ |L(g - Tgpo)(w)pw(w)/u(w)|21/(w)dw = 0 since the Lebesgue
measure v is strictly positive on V. Moreover, since {f;};>1 is an orthonormal basis with
respect to v we obtain by Parseval’s identity

/ |L(g = Teo) (w)pw (w) /v(w)| "v(w)dw = Y El(g = Teo) (W) £ (W) (2.2)
j=1

Now we truncate the infinite sum at some integer m,, which grows with the sample size n.
This ensures consistency of our testing procedure. Further, replacing the expectation by
sample mean we obtain our test statistic

Sui= Y miln SO - golZ) £ W) (2.3)
j=1 i=1

We reject the hypothesis Hy if n.S,, becomes too large. When no additional smoothing
is carried out, that is, L is the identity operator, then 7; = 1 for all j > 1. To achieve
asymptotic normality we need to standardize our test statistic S, by appropriate mean and
variance, which we introduce in the following definition.

DEFINITION 2.1. For all m > 1 let X, be the covariance matrix of the random wvector
U (W) with entries sj = E [UQfJ(W)flT(W)], 1 < j,l < m. Then the trace and the

Frobenius norm of Xy, are respectively denoted by

Lo, 1= isjj and Gy = ( i s?l) 1/2.

j=1 g 1=1
Indeed the next result shows that nS,, after standardization is asymptotically normally
distributed if m,, increases appropriately as the sample size n tends to infinity.
THEOREM 2.1. Let Assumptions 1—4 hold true. If m, satisfies

mn

9717{ =o(1) and (ZTj)3 =o(n) (2.4)

j=1

then under Hy

REMARK 2.2. Since g2, < n,0%( > Tj)2 (cf. proof of Theorem 2.2) condition ;! = o(1)
implies that Z;-nz”l 7; tends to infinity as n increases. Moreover, from condition (2.4) we see
that by choosing a stronger decaying sequence 7 the parameter m,, may be chosen larger.

From the following theorem we see that if ) 7" 7; = O(1) only m;, 1 = o(1) is required. O



In the following result, we establish the asymptotic distribution of our test when the se-
quence of weights 7 may have a stronger decay than in Theorem 2.1, that is, we consider the
case where 7 satisfies > " 7217 = O(1). This holds, for instance, if the sequence 7 satisfies
Tj~J —(14¢) for any € > 0. In this case, the asymptotic distribution changes and additional
deﬁmtlons have to be made. Let X be the covariance matrix of the infinite dimensional

centered vector (U I7 (W)) . The ordered eigenvalues of X are denoted by (A;);>1. Below,
we introduce a sequence {X1 f }j>1 of independent random variables that are distributed as
chi-square with one degree of freedom.

THEOREM 2.2. Let Assumptions 1-4 hold true. If m, satisfies
Mn
ZTj =0(1) and m;'=o0(1) (2.5)
j=1

then under Hy

o0
d j :
J=1

REMARK 2.3 (Estimation of Critical Values). The asymptotic results of Theorem 2.1 and
2.2 depend on unknown population quantities. As we see in the following, the critical
values can be easily estimated. Let Wy, (7) denote a n x m matrix with entries f](W;) for
1<i<nand1<j<m. Moreover, U, = (Y] — ¢o(Z1),...,Yn — ¢0(Zy))t. In the setting
of Theorem 2.1, we replace X, by

S =0T "W (1) diag(U,,)2 W, (7).

Now the asymptotic result of Theorem 2.1 continues to hold if we replace ¢y, by the
Frobenius norm of Em and i, by the trace of ... In the setting of Theorem 2.2, the
asymptotic distribution is not pivotal and has to approximated. First, the difference of
critical values between EJDO 1 ]X%] and the truncated sum Z]]Vi"l Aj X%j converges to zero
if the integer M,, > 0 tends to infinity (dependlng on n). Second, replace ()\')1<j< M, by
()\J)1<j< u, which are the ordered eigenvalues of ) M,- Observe maxi<;<n, \)\ -\ =
||2Mn — Y, || = O(M,n~"/?) almost surely. Hence, the critical values of Z ) )\J le
converge in probability to the ones of the limiting distribution of n S,, if M,, = 0(\/5) g

2.3. Limiting behavior under local alternatives.

Let us study the power of the test statistic S,, that is, the probability to reject a false
hypothesis, against a sequence of linear local alternatives that tends to zero as n — oo. It is
shown that the power of our tests essentially relies on the choice of the weighting sequence
T.

Let us start with the case gniwll = 0(1). We consider the following sequence of linear local
alternatives

Y =¢0(2) +spl2n 1 28(2) + U (2.6)

for some function § € L, := {¢ : E|¢(Z)|* < co}. The next result establishes asymptotic
normality for the standardized test statistic S,,. Let us denote §; := \/7; E[5(Z) f;(W)].



PROPOSITION 2.3. Given the conditions of Theorem 2.1 it holds under (2.6)
(V26m,) " (1. Sy = fim,, ) A N<2’1/2 Z 5?-, 1).
j=1

As we see below the test statistic S, has power advantages if > ™" 7; = O(1). Let us
consider the sequence of linear local alternatives

Y =@o(Z2) +n"Y25(Z) + U (2.7)

for some function § € L£}. For the next result, the sequence {x? ;(05/Aj)}j=1 denotes
independent random variables that are distributed as non-central chi-square with one degree
of freedom and non-centrality parameters ¢;/A;.

PROPOSITION 2.4. Given the conditions of Theorem 2.2 it holds under (2.7)

oo
nSn 53 N3 05/0).
j=1
REMARK 2.4. We see from Proposition 2.3 that our test can detect linear alternatives at
a rate 911/3”71/2' On the other hand, if > 7" 7; = O(1) then S, can detect local linear
alternatives at the faster rate n=1/2. But still our test with L = Id can have better power
against certain smooth classes of alternatives as illustrated by Hong and White [1995] and

Horowitz and Spokoiny [2001]. Indeed, the next subsection shows that additional smoothing
changes the class of alternatives over which uniform consistency can be obtained. O

2.4. Consistency

In this subsection, we establish consistency against a fixed alternative and uniform con-
sistency of our test over appropriate function classes. Let us first consider the case of a
fixed alternative. We assume that Hp does not hold, that is, P(¢ = ¢g) < 1. The follow-
ing proposition shows that our test has the ability to reject a false null hypothesis with
probability 1 as the sample size grows to infinity.

The consistency properties require the following additional assumption.

ASSUMPTION 5. (i) The function pyw /v is uniformly bounded away from zero. (ii) There
exists a constant o, > 0 such that E[U%|W] > o2.

Assumption 5 (i) implies that |[LT(p — ¢o)||lw > 0 for any structural function ¢ in the
alternative. Further, Assumption 5 implies that 3 7" Tj2 =O0(c%, ).

PROPOSITION 2.5. Assume that Hy does not hold. Let E|Y — oo(Z)[* < oo and let As-
sumption 5 (i) hold true. Consider the sequence (om)n>1 satisfying an = o(ns,!). Under
the conditions of Theorem 2.1 we have

P((VZ6n,) " (1S — im,) > an) = 1+ o(1).
Under the conditions of Theorem 2.2 we have o, = o(n) and

P(nS, > ay) =1+ o(1).



In the following, we specify a class of functions over which our test .S, is uniformly consistent.
This essentially implies that there are no alternative functions in this class over which our
test has low power. We show that our test is consistent uniformly over the class

G ={¢ € L% ILT(p ~ @o)llfy > pn~sm, andsup (¢~ po) () < C
z

where C' > 0 is a finite constant. Clearly, if Hy is false then ||LT (¢ —¢0)||%, = pSm,n =" for
all sufficiently large n and some p > 0. By Assumption 4 the sequence 7 is nonincreasing
sequence with 71 = 1 and hence, |LT(¢ — v0)lI% < |IT(¢ — vo)lli < lle — ¢ol% by
Jensen’s inequality. We conclude that Gj contains all alternative functions whose L’QZ—
distance to the structural function ¢y is at least n_lgmn within a constant. If the coefficients
E[(¢ — ©0)(Z) fj(W)] fluctuate for large j then ¢ does not belong to G, if the decay of 7
is too strong. On the other hand, if E[(¢ — ¢0)(Z)f;(W)] is sufficiently small for j up
to a finite constant then ¢ does not necessarily belong to Gf with 7 having a slow decay.
For the next result let g1, and g2, denote the 1 — o quantile of N'(0,1) and Z;; Aj X%j’
respectively.

PROPOSITION 2.6. Let Assumption 5 be satisfied. For any e > 0, any 0 < a < 1, and any
sufficiently large constant p > 0 we have under the conditions of Theorem 2.1 that

lim inf ]P’((\/icmn)_l(nSn - an) > qla) >1-—¢,

n—o00 @egg

while under the conditions of Theorem 2.2

lim inf ]P’(n Sy > qga) >1—ec.

n—o00 (’pegg

3. A parametric specification test

In this section, we present a test whether the structural function ¢ is known up to a finite
dimensional parameter. Let © be a compact subspace of R* then we consider the null
hypothesis Hj, : there exists some ¥ € © such that ¢(-) = ¢(-,9) for a known function ¢.
The alternative hypothesis is that there exists no ¥ € @ such that ¢(-) = ¢(-,¥) holds true.

3.1. The test statistic and its asymptotic distribution

Under Assumptions 3 and 4, the null hypothesis Hj, is equivalent to L(g — T'¢(-,?)) = 0 for
some ¥ € ©. Thereby, to verify H,, we make use of the test statistic S, given in (2.3) where

o is replaced by ¢(~,1/9\n) with 9, being an estimator of . Hence, our test statistic for a
parametric specification is given by

Moy, n

S =3 mln Y (Vi - 6(Zi ) £ (W)
=1

J=1

If the test statistic S}, becomes too large then Hy, has to be rejected. To obtain asymptotic
results for the statistic S we require smoothness conditions of the function ¢ with respect
to its second argument. Below we denote the vector of partial derivatives of ¢ with respect
to 9 = (J1,...,9%)" by ¢y = (¢9,)1<1<k and the matrix of second-order partial derivatives

by @99 = (bo;9,)1<51<k-



ASSUMPTION 6. (i) Let Un be an estimator satisfying H@n — Dol| = Op(n~Y2) for some
Yo € int(O) with o(-) = ¢(-,90) if Hy holds true. (ii) The function ¢ is twice partial
differentiable with respect to its second argument. There exists some constant ng > 1 such
that

sup B¢y, (Z,90)|" <ng and  sup Esup |¢g,9,(Z,0)|" <1y

1<I<k 1<j,I<k 6€O
The following proposition establishes asymptotic normality of S; after standardization.
THEOREM 3.1. Let Assumptions 1-4 and 6 hold true. If my, satisfies (2.4), then under H,

(V26m,) " (1 SP = i) S N(0,1).

In the following theorem, we state the asymptotic distribution of n.S; when > =0(1).

In this case, we assume that 511 satisfies under H,,

Vi(n —00) =72 " b (Vi) + 0p(1) (3.1)
i=1
where V; := (Y;, Z;, Wi, ¥9) and hg (Vi) = (h1(V;), ..., hi(V;))" where hj, 1 < j < k, are real
valued functions. It is well known that this representation holds if 1,, is the generalized
method of moments estimator. Let 3P be the covariance matrix of the infinite dimensional
centered vector (Uf;(W) —E[ff(W)es(Z, ﬁO)t]hE(V))J;l- The ordered eigenvalues of XP
are denoted by (A7);>1.

THEOREM 3.2. Let Assumptionsl—4 and 6 hold true. Assume that Hy, holds true and 511
satisfies condition (3.1) with Eh;j(V) =0 and E |h;(V)|* < 00, 1 < j < k. If my, satisfies
(2.5), then

[e.e]
d P2
nSk — E Aj XTj-
J=1

REMARK 3.1. [Estimation of Critical Values] For the estimation of critical values of Theorem
3.1 and 3.2, let us define U}, = (Y1 — &(Z1,9n), . Yo — qﬁ(Zn,zS‘n))t. We estimate the

covariance matrix X, by
D =1~ Wi (1) diag(UP)2 W, (7).

Now the asymptotic result of Theorem 3.1 continues to hold if we replace ¢y, by the
Frobenius norm of X, and p,,, by the trace of X,, . In the setting of Theorem 3.2,
we replace P by a finite dimensional matrix. Let Ay be a n x k£ matrix with entries
b9,(Zi,0n) for 1 < i < my 1 <1< kand hy(V) = (hg(Vi),...,hg(Vs))'. Then define
V. := n~th,(V)AL. Given a sufficiently large integer M > 0 we estimate XP by

S8y = n Wy () (ding(UR) - Vk>t (diag(UR) — Vi) Wis(r).

)X

the ordered eigenvalues of Eﬁ/[n We have maxi<;<nm, |X§’ — NI =0,(1) if My, = o(y/n). O

Hence, we approximate Z]Oil )\jX%j by the finite sum Z]]Vi"l 3\\5 X%j where (Xf Ji<j<u, are



3.2. Limiting behavior under local alternatives and consistency.

In the following, we study the power and consistency properties of the test statistic S.
In the following, we consider a sequence of linear local alternatives (2.6) or (2.7) with
w0 = ¢(Vo, ). Further, let §; denote the projection of § onto the orthogonal complement
of ¢(-,90); that is, E[py(Z,70)01(Z)] = 0. Let us denote d;1 := \/7j E[6.(Z)f;(W)].
PROPOSITION 3.3. Let the conditions of Theorem 3.1 be satisfied. Then under (2.6) with
wo = ¢(+,99) it holds

(V2m, ) (n SPh— an) 4 N(2_1/2 Z 5]2-l, 1).
j=1
Let the conditions of Theorem 3.2 be satisfied. Then under (2.7) with po = ¢(-, Vo) it holds

o0
d
n S5y AN (65 /AD).
j=1
REMARK 3.2. Under homoscedasticity, that is, E[U?|/W] = 2, W ~ U[0, 1], and L = Id we
see from Proposition 3.3 that our test has the same power properties as the test of Hong
and White [1995]. On the other hand, if 77" 7; = O(1) then our test can detect local

linear alternatives at a rate n~'/2 as in Horowitz [2006], which decreases more quickly than
the rate obtained by Tripathi and Kitamura [2003]. O

The next proposition establishes consistency of our test against a fixed alternative model.
It is assumed that Hj, is false, that is, there exists no ¢ € © such that ¢(-) = ¢(-,9). In
this situation, ¥y denotes the probability limit of the estimator 5n

PROPOSITION 3.4. Assume that Hy, does not hold. Let E|Y — ¢(Z,99)|* < oo and Assump-

tion 5 (i) hold true. Let (cou)n>1 as in Proposition 2.5. Under the conditions of Theorem
3.1 we have

P((\/igmn)fl (nSE — fim,,) > an> =1+o(1).
Given the conditions of Theorem 3.2 it holds
P(nSE > ay) =1+ o(1).
In the following, we show that S} is consistent uniformly over the function class
Ho = {o € £4+ ILT(p — 00 90)) [y > pn~" o, andsup (=) — 6(z,90)| < O
ze

for some constant C' > 0 and ¥y denotes the probability limit of . Similarly as in the
previous section, it can be seen that M, only contains functions whose E2Z distance to
o(+, %) is at least nflgmn within a constant. For the next result let ¢i, and g¢s, denote the
1 — o quantile of N(0,1) and >°7%, /\f X%j, respectively.
PROPOSITION 3.5. Let Assumption 5 be satisfied. For any e > 0, any 0 < a < 1, and any
sufficiently large constant p > 0 we have under the conditions of Theorem 3.1 that

lim inf ]P’((\/igmn)_l(n SP— fim,) > q1a> >1—¢,

n—o00 @GHZ
whereas under the conditions of Theorem 3.2 it holds

: : p _
Tllggo (plenygﬁIP’(n SP > qga) >1—ec.
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4. A nonparametric test of exogeneity

Endogeneity of regressors is a common problem in econometric applications. Falsely as-
suming exogeneity of the regressors leads to inconsistent estimators. On the other hand,
treating exogenous regressors as if they were endogenous can lower the accuracy of esti-
mation dramatically. In this section, we propose a test whether the vector of regressors
Z is exogenous, that is, E[U|Z] = 0 or equivalently ¢(Z) = E[Y|Z]. In this section, let
vo(Z) = E[Y|Z] then the hypothesis under consideration is given by H. : ¢ = ¢o. The
alternative hypothesis is that ¢ # ¢g.

4.1. The test statistic and its asymptotic distribution

To establish a test of exogeneity, let us first introduce an estimator of the conditional mean
of Y given Z. This estimator is based on a sequence of approximating functions {e;};>1
belonging to £%. Further, let Z; denote a n X k matrix with entries e;(Z;) for 1 <i < n
and 1 < j < k. Moreover, let Y,, = (Y1,...,Y,)!. Then we define the estimator

Zr() =ex(-)'Bx where By = (Z}1Zy)” Z4 Y. (4.1)

In contrast to the parametric case we need to allow for k tending to infinity as n — oo in
order to ensure consistency of the estimator ;. Under conditions given below Z};nan will
be nonsingular with probability approaching one and hence its generalized inverse will be
the standard inverse. Note that the asymptotic behavior of the estimator @, was studied,
for example, by Newey [1997].

Under Assumptions 3 and 4, the null hypothesis H, is equivalent to L(g — T'yg) = 0. Con-
sequently, our test of exogeneity of Z is based on the goodness-of-fit statistic .5, introduced
in (2.3) but where g is replaced by the series estimator @, . The proposed test statistic
for H, is now given by

mn

Sy = ZTj|n_1 (Y; — &y, (Zi))fj(Wi)}Q
=1

j=1 i
where k, and m,, tend to infinity as n — oo. The hypothesis of exogeneity of Z has to be
rejected if SS becomes too large.
For controlling the bias of the estimator i, we specify in the following a rate of approxi-
mation (cf. Newey [1997]). Let v = (7j)j>1 be a nondecreasing sequence with y; = 1. We
assume that ¢ belongs to

Fy o= {gf) € £QZ : sug lp(2) — e@(z)tﬁknﬁ = O(*y,;nl) for some Sy, € ]Rk"}.
ze

Here, the sequence of weights v measures the approximation error of ¢g with respect to the
functions {e;};>1.

ASSUMPTION 7. (i) Let ¢o € F., with nondecreasing sequence vy satisfying j*> = o(v;). (i)
There exists some constant ne > 1 such that sup,ez |leg, (2)1* < nekn. (iii) The smallest
eigenvalue of Elex(Z)er(2)!] is bounded away from zero uniformly in k. (i) E[U%Z] is
bounded.

Assumption 7 (i) determines the required asymptotic behavior of the rate . For splines
and power series this assumption is satisfied if the number of continuous derivatives of (g

11



divided by the dimension of Z equals two. Assumption 7 (i7) and (¢i¢) restrict the magnitude
of the approximating functions {e;};>1 and impose nonsingularity of their second moment
matrix.

We are now in the position to proof the following asymptotic result for the standardized test
statistic S},. Here, a key requirement is that &k, = o(Gn,) implying that k, = o(3_7"" 75)
and, in particular, k, = o(m,,) if the smoothing operator L is the identity.

THEOREM 4.1. Let Assumptions 1—4 and 7 be satisfied. If

Mn

n = 0(Yk,Smn )s kn = 0(Sm,), and (ZTJ)B =o(n) (4.2)
j=1

then under Hg it holds

(V26,) " (1SS = i) % N(0,1).

EXAMPLE 4.1. Let Z be continuously distributed with dim(Z) = r and set L = Id. Consider
the polynomial case where v, ~ §2°/7 with p > 1 and let m, ~ n” with 0 < v < 1/3. Let
Assumption 5 hold true then \/m, = O(sy, ). Hence, condition (4.2) is satisfied if k,, ~ n”
with

r(1—v/2)/(2p) < K < v)2. (4.3)

This ensures that the bias of this estimator in the statistic S¢ is asymptotically negligible.
Note that condition (4.3) requires 2p > r (2/v — 1). Hence, with a larger dimension 7 also
the smoothness of ¢ has to increase, reflecting the curse of dimensionality. O

The next result states an asymptotic distribution result for the statistic S} if Z;”Z”I Tj =
O(1). Let X be the covariance matrix of the infinite dimensional centered vector (U ( fTwW)—
> st E[f;(W)el(Z)]el(Z)))j>1. The ordered eigenvalues of X are denoted by (Af);>1.
THEOREM 4.2. Let Assumptions 1—4 and 7 be satisfied. If

ZTj =0(1), n=0(w,), k> =on), and m;'=o(1) (4.4)
j=1
then under H, it holds

oo
d
nSy — Z Af X%j'
i=1

ExaMPLE 4.2. Consider the setting of Example 4.1 but where the eigenvalues of L satisfy
7j ~ j~2. Condition (4.4) is satisfied if m, ~ n” for some v > 0 and k, ~ n® with
r/(2p) < k < 1/3. Here, the required smoothness of g is p > 3r/2. In contrast to the
setting of Theorem 4.1, the estimator of g needs to be undersmoothed. This ensures that

the bias of this estimator in the statistic Sy is asymptotically negligible. 0

REMARK 4.1. In contrast to Blundell and Horowitz [2007] no smoothness assumptions on
the joint distribution of (Z, W) is required here. In addition, we do not need any assumption
that links the smoothness of the regression function g to the smoothness of the joint density
of (Z,W). O

12



REMARK 4.2 (Estimation of Critical Values). For the estimation of critical values of The-
orem 4.1 and 4.2, let us define US = (Y1 — @, (Z1),...,Yn —@kn(Zn))t. For any m > 1 we
estimate the covariance matrix X, by

~

Y =1t W, (1) diag(U®)? W, (7).

Now the asymptotic result of Theorem 4.1 continues to hold if we replace ¢, by the
Frobenius norm of X, and p,,, by the trace of X, . This consistency is shown in Lemma
4.3. In the setting of Theorem 4.2, we replace X'° by a finite dimensional matrix

¢ = n W ()t (In - n*lzknzgn) diag(UE)? (In - n*lzknztn)wM(T)

o~

where M > 0 is a sufficiently large integer. Let (Af)i<j<m, denote the ordered eigen-

values of f‘j{/[n Hence, we approximate Z;’il A?x%j by the finite sum Zjvjnl X? X%j where

max) <<, |X§ — X¢| = 0,(1) if M, = o(y/n). O

LEMMA 4.3. Consider E’mn as defined in Remark 4.2. Under conditions of Theorem 4.1 or
Theorem 4.2 the difference of its Frobenius norm to <, and its trace to p,, converge in
probability to zero.

4.2. Limiting behavior under local alternatives and consistency.

Similar to the previous sections we study the power and consistency properties of our test.
Let us study the power of our test of exogeneity under linear local alternatives (2.6) or

(2.7). In these cases, it holds E[U|W] = 0 but E[U|Z] = —g}n/fnfl/Q(S(Z) under (2.6) or
E[U|Z) = —n~Y26(Z) under (2.7).

PROPOSITION 4.4. Given the conditions of Theorem 4.1 and Assumption 5 (i) it holds
under (2.6)

(\/igmn)_l (n Sy — ,umn) 4, N<2_1/2 Z 6?, 1).
j=1
Given the conditions of Theorem 4.2 it holds under (2.7)
e d . e e
j=1

Let us now establish consistency of our tests when H, does not hold, that is, IP’((p = cpo) < 1.

PROPOSITION 4.5. Assume that H, does not hold. Let E|Y —o(Z)|* < 0o and Assumption
5 (1) hold true. Let (an)n>1 as in Proposition 2.5. Under the conditions of Theorem 4.1 we
have

P((\@gmn)_l(nSﬁ — an) > an> =1+o0(1),
whereas in the setting of Theorem 4.2

P(n Sy > an) =1+ o(1).
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In the following we show that our tests are consistent uniformly over the function class

75 = {e € L5 ILT(p — o) iy > pn~'sm, andsup|(p — wo)(2)| < C'

ze

form some constant C' > 0. For the next result let ¢1,, and g9, denote the 1 — o quantile of
N(0,1) and Y222, AS X3, respectively.

PROPOSITION 4.6. Let Assumption 5 be satisfied. Under the conditions of Theorem 4.1 we
have for any € >0, any 0 < a < 1, and any sufficiently large constant p > 0 that

lim inf P((\/igmn)_l(n Sf = tm,,) > q1a> >1—c¢,

n—o00 @GIﬁ
whereas under the conditions of Theorem 4.2 it holds

nh_)rrolo @iélzfgp(n Se > qza) >1—c¢.

5. A nonparametric specification test

A solution to the linear operator equation (2.1) only exists if g belongs to the range of T
This might be violated if, for instance, the instrument is not valid, that is, E[U|W] # 0. In
many economic applications a priori smoothness restriction on the unknown function can
be justified which we capture by a set of functions F. We consider the hypothesis H,p:
there exists a solution ¢g € F to (2.1). The alternative hypothesis is that there exists a
solution (2.1) which does not belong to F. Under the alternative only unsmooth functions
solve the conditional moment restriction which can be interpreted as a failure of validity of
the instrument W. We see in this section that our results allow also for a test of dimension
reduction of the vector of regressors Z, that is, whether some regressors can be omitted
from the structural function .

5.1. Nonparametric estimation method

The nonparametric estimator. In the following, we derive an estimator of g under the
null hypothesis Hyp,. For simplicity, assume that Z = )V and consider a sequence {e;};>1 of
approximating functions which are orthonormal on Z with respect to the Lebesque measure
v. Under conditions given below, ¢g has the expansion ¢ () = D21 [ ¢o(2)ei(z)v(z)dz e(-).
Thereby, the conditional moment restriction under H,, leads to the following unconditional
moment restrictions
[ee]
BYe;(W)] = 3 Ble(W)a(2)] [ o(a(2)v()dz (5.1)

=1

for 7 > 1. This motivates the following orthogonal series type estimator. Let Zj and Y, be
as in the previous section and let X}, denote a n x k matrix with entries e;(W;) for 1 <i < n
and 1 < j < k. Then for each £ > 1 we consider the estimator

Pr() = ex(-)' By where By = (XLZp)” XLY,,. (5.2)

Under conditions given below inzkn will be nonsingular with probability approaching
one and hence its generalized inverse will be the standard inverse. The nonparametric
estimator @y, given in (5.2) was studied by Johannes and Schwarz [2010], Horowitz [2011],
and Horowitz [2012].
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Additional assumptions. In the following, we specify a priori smoothness assumptions
captured by the set F. As noted by Horowitz [2012], uniformly consistent testing of Hy,
is only possible if the null is restricted that any solution to (2.1) is smooth. Here, we as-
sume that under the null hypothesis ¢y belongs to the ellipsoid F := F% := {qb € £2Z :
> i1 E[¢(Z)e;j(Z)]* < p}. As in the previous section, v = (7;);>1 measures the approx-
imation error of ¢g with respect to the basis {e;};>1.

Further, as usual in the context of nonparametric instrumental regression, we specify some
mapping properties of the conditional expectation operator T'. Denote by 7T the set of all
nonsingular operators mapping EQZ to E%,V. Given a sequence of weights v := (v;);>1 and
d > 1 we define the subset 7 of T by

Ty = {TET /| T¢)(w)|*v(w dgvj /(b z)ej(z )dz) for allqbéﬁ%}.

If pz/v is bounded from above and py /v is uniformly bounded away from zero then the
conditional expectation operator 1" belongs to 7; with v; = 1, 7 > 1, due to Jensen’s
inequality. Notice that for all T € 7 it follows that |Te;||, < dnpv,; and thereby, the
condition 7" € T} links the operator T to the basis {e;};>1. In the following, we denote
[T)r = Elex(W)eg(Z)!] which is assumed to be a nonsingular matrix In what follows, we
introduce a stronger condition on the basis {e;};>1. We denote by T}, for some D > d the
subset of 7} given by

4D = {T € 7 ¢ [Ty is nonsingular and iull)Hdiag(vl, . .,Uk)l/Q[T]EIHQ < D}.
> k

The class 7} 4.p only contains operators T whose off-diagonal elements of [T], k L are sufficiently
small for all k > 1. A similar diagonality restriction has been used by Hall and Horowitz
[2005] or Breunig and Johannes [2011]. Besides the mapping properties for the operator T'
we need a stronger assumption for the basis under consideration. The following condition
gathers conditions on the sequences v and v.

ASSUMPTION 8. (i) Under Hpyp, let po € F4 with nondecreasing sequence vy satisfying j3 =
o(7;). (i) The sequence {e;j};>1 is an orthogonal basis on Z = W with respect to v. (iii)
There exists some constant ne = 1 such that sup;, sup,ez |ej(2)| < ne. () Let T €

with v being a strictly positive sequences such that v and (v;/T;)j=1 are nonincreasing. (v)
pz/v is bounded from above and pyw /v is uniformly bounded away from zero.

Due to Assumption 8 (iv) the degree of additional smoothing for our testing procedure
must not be stronger than the degree of ill-posedness implied by the conditional expectation
operator T. Under similar assumptions as above, Johannes and Schwarz [2010] show that
mean integrated squared error loss of @y, attains the optimal rate of convergence R, :=
max (fy];nl, Zf 1(nvj)~1). Due to Assumption 8 (v) we do not require orthonormal bases
with respect to the unknown distribution (Z, W) (cf. Remark 3.2 of Breunig and Johannes
[2011)).

5.2. The test statistic and its asymptotic distribution

As in the previous sections, our test is based on the observation that the null hypothesis
H,p is equivalent to L(g —T'¢p) = 0. Our goodness-of-fit statistic for testing nonparametric
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specifications is given by S,, where g is replaced by the nonparametric estimator @y, given
in (5.2), that is,

S =y mi|n T Y (Yi - B (20) i (W)
j=1 i=1

If SpP becomes too large then there exists no function in 7% solving (2.1). The next result
establishes asymptotic normality of Sp” after standardization. Again, a key requirement
to obtain this asymptotic distribution is that k, = o(Gy,) implying that k, = o(my,) if
the smoothing operator L is the identity. This corresponds to the test of overidentification
in the parametric framework where more orthogonality restrictions than parameters are
required.

THEOREM 5.1. Let Assumptions 1—4 and 8 be satisfied. If

Nk, = 0(Vk, Smn ), kn = 0(Sm,, )5 k”(%ﬁ)2 = O(nvy, ), and (%7—])3 =o(n) (5.3)
=1 =1

then it holds under H,p
(V2m, )t (nSﬁp - ,umn) L\ N(0,1).

ExampLE 5.1. Consider the setting of Example 4.1. In the mildly ill posed case where
vj ~ j~2%" for some a > 0 condition (5.3) holds true if k,, ~ n® with x < v/2 and

r(1—v/2)/(2a+2p) <k <r(l—2v)/(2a+7).

In the severely ill posed case, that is, vj ~ exp(—j2“/r) for some a > 0, condition (5.3) is
satisfied if, for example, m,, satisfies m,, = o(kh) and k, = o(y/m,) where k;,, ~ (logn —
log(mz/Q))T/@a). O
The next result states an asymptotic distribution of our test if 37"y 7; = O(1). Let X" be
the covariance matrix of the infinite dimensional centered vector (U( fTwW) — ejT-(W)))j>1.

The ordered eigenvalues of X are denoted by ()\?p )jz1-

THEOREM 5.2. Let Assumptions 1—4 and 8 be satisfied. If
Mn
S m=00), nog, =olw,), K, =onuvy,), andmy' =o(1) (5.4)
j=1
then it holds under Hy,p
d o
n Sy — Z/\;‘lp Xij-

j=1

ExAMPLE 5.2. Consider the setting of Example 4.2. In the mildly ill posed case, that is,

vj ~ j72/7 for some a > 0, condition (5.4) is satisfied if m,, ~ n” for some v > 0 and

k, ~ n® with
r/(2a+2p) < k < r/(2a + 3r).

In the severely ill posed case, that is, v; ~ exp(—;j2*/") for some a > 0, condition (5.4) is

satisfied if &, ~ (log(an))T/ 29 for any € > 0. In contrast to Theorem 5.1, we require
undersmoothing of the estimator @y, . O
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REMARK 5.1. If the basis {€;};>1 coincides with {f;};>1 then n Sy’ is asymptotically de-
generate. To avoid this degeneracy problem we choose different bases functions and hence,
sample splitting as used by Horowitz [2012] is not necessary here. g

REMARK 5.2. Let Z’ be a vector containing only entries of Z with dim(Z’) < dim(Z). It
is easy to generalize our previous result for a test of H, 1/1p1 there exists a solution ¢y € F%
to (2.1) only depending on Z’. To be more precise consider the test statistic

n
Sa® = 'Y (Vi = @ (ZD) fim (WP
i=1
where @, is the estimator (5.2) based on an iid. sample (Y1, 2, W1),...,(Ys, Z),,W,,) of
(Y, Z',W). Under Hr’lp we consider the conditional expectation operator T” : £%, — E%V
with T"¢ := E[¢p(Z')|W]. It is interesting to note that if 7" is nonsingular then also 7" is.
Hence, for a test of H I’lp we may replace Assumption 3 by the weaker condition that 7" is

nonsingular. Moreover, under Hj, the results of Theorem 5.1 and 5.2 still hold true if we
replace Z by Z'. O

In the mildly ill-posed case, the estimation precision suffers from the curse of dimensionality.
Hence, by the test of dimension reduction of Z we can increase the accuracy of estimation of
©o. On the other hand, in the severely ill-posed case the rate of convergence is independent
of the dimension of Z (cf. Chen and Reif [2011]). As the next example illustrates, a
dimension reduction test can also weaken the required restrictions on the instrument to
obtain identification of ¢ in the restricted model.

ExAMPLE 5.3. Let Z = (Z(, Z(?)) where both, Z(!) and Z() are endogenous vectors of
regressors. But only Z(1) satisfies a sufficiently strong relationship with the instrument W in
the sense that for all ¢ € EZ(l) condition E[¢(Z())|W] = 0 implies ¢ = 0. In this example,
we do not assume that this completeness condition is fulfilled for the joint distribution of
(Z) W). Thereby only the operator T} : LQZ(I) — L2, with TM¢ = E[p(ZM)|W] is
nonsingular but 7T is singular. If our dimension reduction test of Z indicates that Z®) can
be omitted from the structural function ¢y then we obtain identification in the restricted

model. O

REMARK 5.3. [Estimation of Critical Values] For the estimation of critical values of Theorem
5.1 and 5.2, let us define Uy’ = (Y1 — &k, (Z1),...,Yn — @kn(Zn))t For all m > 1, we
estimate the covariance matrix X, by

S =1~ W (1) diag(UP)2 W, (7).

Now the asymptotic result of Theorem 5.1 continues to hold if we replace ¢, by the
Frobenius norm of Emn and fi,, by the trace of Zmn (this is easily seen from the proof of
Lemma 4.3 assuming that {f;};>1 is uniformly bounded). In the setting of Theorem 5.2, we
replace X by a finite dimensional matrix. Let Vj := Wy (ZLW})"'Z! for k > 1. Then
for a sufficiently large integer M > 0 we estimate X"P by

T = W (7) (L — Vi)' diag(UZ)? (L, — Vi, )W (7).

Hence, we approximate Z‘;il npxlj by the finite sum Z )\np le where ()\;1 )i<j<, are

the ordered eigenvalues of EM,L where maxi <<, |)\?p ?p| =o0p(1) if M,, =o(y/n). O
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5.3. Limiting behavior under local alternatives and consistency.

Similar to the previous sections we study the power and consistency properties of our test.
To study the power against local alternatives of the statistic Sp,” we consider alternative
models with the function ¢y, (-) = e, (+)![T] ,;nl E[Y fk, (W)]. We consider alternative models

Y = o4, (Z) + P07 125(2) + U (5.5)

for some function § € L% and where E[U|W] = 0. Let ¢ be such that E[Y — ¢(Z)|W] = 0.
Due to (5.5) ¢ does not belong Fy and hence H,, fails. Indeed, if ¢ € FY then we show
in the appendix that || T(¢ — ¢, )||% = O(U;gnfy,;nl) = 0(Gm, n~ ') due to condition (5.3) (or
(5.4)), which is in contrast to (5.5).

PROPOSITION 5.3. Let Assumption 5 (ii) be satisfied. Given the conditions of Theorem 5.1
it holds under (5.5)

(\/igmn)fl (n SpP — an) LS N(271/2 Zf?, 1).
j=1
Given the conditions of Theorem 5.2 it holds under (5.5) where G, is replaced by 1 that
np 4 - n n
n S5 NP G (6;/A5P).
j=1

In the next proposition, we establish consistency of our test when H,, does not hold, that
is, the solution to (2.1) does not belong to F4 for any sequence v satisfying Assumption 8
and any sufficiently large constant 0 < p < oc.

PROPOSITION 5.4. Assume that Hy,, does not hold. Let Assumption 5 (i) hold true. Let
(an)n>1 be as in Proposition 2.5. Under the conditions of Theorem 5.1 and 5.2, respectively,
we have

P((\/igmn)_l (nSIP — i, ) > ozn> =1+o0(1),
P(nSiP > ay) =14 o(1).

In the following we show that our tests are consistent uniformly over the function class

gi ={e € £ ILT( - 9o)llfy = s, andsup| (12— ¢0) (2)] < c}

where g € F¥ solves (2.1) and C' > 0 is a finite constant. For the next result let g1, and
@20 denote the 1 — « quantile of N'(0,1) and Z;; )\?p X%]W respectively.

PROPOSITION 5.5. Let Assumption 5 be satisfied. For any e > 0, any 0 < a < 1, and any
sufficiently large constant p > 0 we have under the conditions of Theorem 5.1

lim inf ]P’((\/ﬁcmn)_l(nSﬁZp = Hmy) > q1a> >1—¢,

n—00 lpejﬁ

whereas under the conditions of Theorem 5.2 it holds

lim inf ]P’(n ShP > qga) >1—c.
n—o00 <p€‘77f
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6. Monte Carlo simulation

In this section, we study the finite-sample performance of our test by presenting the results
of Monte Carlo experiments. There are 1000 Monte Carlo replications in each experiment.
Results are presented for the nominal level 0.05. Realizations of Y were generated from

Y = (Z) + cpU (6.1)

for some constant ¢y > 0 specified below. The structural function ¢ and the joint distribu-
tion of (Z, W, U) varies in the experiments below. As basis {f;};>1 we choose cosine basis
functions given by f;(t) = v/2cos(mjit) for j = 1,2,... throughout this simulation study.

Parametric Specification Let us investigate the finite sample performance of our tests in
the case of parametric specifications. Realizations (Z, W) were generated by W ~ 1[0, 1],
Z = (EW+(1—-¢)e)? where ¢ = 0.8 and ¢ ~ N(0.5,0.1). Moreover, let U = ke++V1 — Kk2¢
with £ = 0.3 and € ~ N(0, 1). Then realizations of Y where generated by (6.1) with ¢;y = 0.2
by an either linear function

o(z) = z, (6.2)
a polynomial of second degree

©(2) =z — 22, (6.3)
or a polynomial of third degree

0(z) =z — 22 + 0325, (6.4)

Given (6.4) is the correct model, then #3 = 1.5 if (6.2) is the null model and 03 = 3 if (6.2)
is the null model. In Table 1 we depict the empirical rejection probabilities when using
SE with additional smoothing where either 7; = j~%or Tj = 4§72, j > 1, which we denote
by SiP or S2P , respectively. When 7; = 47! then the number of basis functions used is

Sample  Null Alt. Empirical Rejection probability
Size  Model  Model Spp S2P H(2006) test

250 (6.2) HP true 0.047 0.045 0.063
(6.3) HP true 0.049 0.050 0.059

(6.2) (6.3) 0.902 0.930 0.888

(6.2) (6.4) 0.730 0.732 0.653

(6.3) (6.4) 0.442 0.488 0.468

500 (6.2) HP true 0.055 0.044 0.053
(6.3) HP true 0.051 0.053 0.059

(6.2) (6.3) 0.989 0.998 0.988

(6.2) (6.4) 0.899 0.894 0.780

(6.3) (6.4) 0.709 0.728 0.652

Table 1: Empirical Rejection probabilities for parametric specification
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m = 200 while in the case of 7; = j ~2 a choice of m = 100 is sufficient. The critical values

are estimated as described in Remark 3.1 where M = 150 if 7; = j~Y and M = 100 if
Ti=17] ~2. This choice of M ensures that the estimated eigenvalues /):j are sufficiently close
to zero for all 7 > M. We compare our test statistic with the test of Horowitz [2006]. We
follow his implementation using biweight kernels. The bandwidth used to estimate the joint
density of (Z, W) was also selected by cross validation. As Table 1 illustrates, the results
for SiP and S2P are quite similar. In both situations, our test is more powerful than the test
of Horowitz [2006] when testing (6.2) against (6.4). In this simulation study, we observed
that the estimated coefficients of T'(p — ¢(¥o, -)) have a fast decay. Consequently, the test
statistic .S, with no weighting has less power, as we discussed in Subsection 2.4. In contrast,
we will demonstrate by the end of this section that using weights can be inappropriate.

Testing Exogeneity We now turn to the test of exogeneity where the realizations (Z, W)
are generated by W ~ U[0,1] and Z = ¢ W+ /1 — €2 ¢ with € = 0.7, and & ~ U[0, 1]. More-
over, let U = ke + v/1 — k% e with € ~ U[0, 1]. Here, x measures the degree of endogeneity
of Z and is varied among the experiments. The null hypothesis Hy holds true if x = 0 and
is false otherwise. Now realizations of ¥ where generated by (6.1) with ¢y = 1 and the
nonparametric structural function ¢;(z) = Z?’;l(—l)jﬂ j~lsin(j7rz). For computational
reasons we truncate the infinite sum at K = 100. The resulting function is displayed in
Figure 6. We estimate the structural relationship using Lagrange polynomials. Indeed,
only a few basis functions are necessary to accurately approximate the true function. If we
choose k,, too small or too large then the estimator will be a poor approximate of the true
structural function and hence, the test statistic will reject H,p. In this experiment we set
k,, = 4 for n = 250 and n = 500.

Sample Size kK Empirical Rejection probability using
Sle S2¢ BH(2007)’ test
250 0.0 0.038 0.030 0.030
0.15 0.209 0.314 0.153
0.2 0.369 0.513 0.293
0.25 0.591 0.716 0.504
500 0.0 0.043 0.043 0.052
0.15 0.476 0.543 0.416
0.2 0.749 0.809 0.693
0.25 0.922 0.957 0.885

Table 2: Empirical Rejection probabilities for testing exogeneity

In Table 2 we depict the empirical rejection probabilities when using S with additional
smoothing where either 7; = 571 or Tj = 72, j > 1, which we denote by S or S2¢
respectively. The critical values of these statistics are estimated as described in Remark
4.2 with M = 50 in case of 7; = j~'and M = 40 in case of Tj = j~2. We compare our
results with the test of Blundell and Horowitz [2007]. We follow their approach by choosing
the bandwidth of the joint density of (Z, W) by cross validation. The bandwidth of the
marginal of Z is n!/®~7/2* times the cross-validation bandwidth. As we see from Table 2,

Sle is slightly more powerful than the test of Blundell and Horowitz [2007]. If we choose a
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stronger sequence, however, then our test statistic S2¢ becomes considerably more powerful.

Nonparametric Specification Let us now study the finite sample of our test in the case
of nonparametric specification. We generate the pair (Z,W) as in the parametric case
described above. For the generation of the dependent variable Y we distinguish two cases.
Besides the structural function ¢q(z) = E;‘;l(—l)j‘“ j2sin(jmz) we also consider the
function p9(z) = Z;’il((—l)j‘*'1 +1)/4j %sin(jrz). Again, for computational reasons we
truncate the infinite sum at K = 100. The resulting functions are displayed in Figure 6.
Further, YV is generated by (6.1) either with ¢; and ¢y = 0.2 or 9 and ¢y = 0.8. In both
cases, we estimate the structural relationship using Lagrange polynomials with k, = 4 for
n = 500 and n = 1000.

If Hyp is false then E[U|W] # 0 and we let E[U|W] = E[p(Z)|W] where p is defined below.

Consequently, when H,, is false we generate realizations of Y from
Y =wi(Z) +pi(Z) + cyU

for I =1,2 and j > 1 where p;(2) = c;j(exp(2j2z) Li.<1/2) +exp(25(1 — 2)) 125172y —1) and
¢;j is a normalizing constant such that fol pj(z)dz = 0.5. The functions p; are continuous
but not differentiable at 0.5. Roughly speaking, the degree of roughness of p; is larger for
larger j. In Table 3, we depict the empirical rejection probabilities when using Sp° with

14

1.0 12
04 05 0.6
I I

01(2)
0212)

0.3
I

0.2

0.2
I
0.1

0.0
0.0

Figure 1: Graph of ¢ and 9

either no smoothing or additional smoothing 7; = j 2, j > 1, which we denote by Sonp
or S , respectively. When no additional smoothing is applied then the number of basis
functions f; is given by m,, = 11 if n = 500 and m,, = 15 if n = 1000 and hence, the choice
of my, is slightly larger than n'/? as suggested by the theoretical results. The critical values
of these statistics are estimated as described in Remark 5.3 where in the case of S?lnp we
choose M = 100. We compare our results with the test of Horowitz [2012]. We observe
that the statistic SO is less powerful than S2"P against the alternatives p; and ps.

In the following, we illustrate that using additional weighting can be inappropriate. Table 4
illustrates the power of our tests when the structural function ¢ is considered and realiza-
tions (Z, W) were generated by W ~ U[0,1], Z = (0.8 W + 0.3¢)? where £ ~ N(0.5,0.05).
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Sample Size p Empirical Rejection probability using

SpP SEP - H(2012) test
500 H™ true  0.034 0.039 0.040
p1 0.099 0.382 0.258
P2 0.309 0.765 0.536
P4 0.498 0.884 0.712
1000 H™ true  0.058 0.058 0.046
p1 0.405 0.672 0.427
P2 0.768 0.899 0.704
P4 0.920 0.943 0.808

Table 3: Empirical Rejection prob. for Nonparametric Specification for ¢; with ¢y = 0.2

In this case, we generate Y using (6.1) where ¢y = 0.8. In this case, the estimates of the
generalized coefficients of T'(¢ — o) are more fluctuating and using weights is not appro-
priate here. Indeed, as we can see from Table 4, the test statistic SPUP with no smoothing
is more powerful than S2"P were weighting i =j72 j =1, is used. In particular, SomP i
much more powerful than the test of Horowitz [2012].

Sample Size  p Empirical Rejection probability using
SpP SEP - H(2012) test
500 H"P true 0.022 0.044 0.044
03 0.230 0.193 0.158
04 0.400 0.319 0.245
05 0.543 0.463 0.370
1000 H"P true 0.044 0.049 0.052
03 0.643 0.343 0.302
P4 0.836 0.579 0.518
05 0.924 0.792 0.722

Table 4: Empirical Rejection prob. for Nonparametric Specification for o with ¢y = 0.8

7. Conclusion

Based on the methodology of series estimation, we have developed in this paper a family of
goodness-of-fit statistics and derived their asymptotic properties. The implementation of
these statistics is straightforward. We have seen that the asymptotic results depend crucially
on the choice of the smoothing operator L. By choosing a stronger decaying sequence T,
our test becomes more powerful with respect to local alternatives but might lose desirable
consistency properties. We gave heuristic arguments how to choose the weights in practice.
In addition, in a Monte Carlo investigation our tests perform well in finite samples.
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A. Appendix

Throughout the Appendix, let C' > 0 denote a generic constant that may be different in
different uses. For ease of notationlet >, => " and >, _, = > 1", S Given m > 1,
En and F, denote the subspace of EQZ and E%V spanned by the functions {ej};":l and
{fi}]", respectively. E,, and E;- (vesp. Fy, and F;-) denote the orthogonal projections on
Em (resp. Fp,) and its orthogonal complement SnJ:L (resp. .7-",#), respectively. Respectively,
given functions ¢ € £% and ¢ € L}, we define by [¢],, and [¢)],, m-dimensional vectors
with entries [¢]; = E[¢(Z)e;(Z)] and [¢]; = E[p(W) fi(W)] for 1 < 4,1 < m.

A.1l. Proofs of Section 2.

PrOOF OF THEOREM 2.1. Under Hy we have (Y; — ¢o(Z;))fr,(Wi) = Uifj,(W;) for all
m > 1 and consequently we observe

gmn(nS — Hmy :722 ‘Uf] SJ] ZZUU}C] ( )

i j=1 nz;ﬁz]l

where the first summand tends in probability to zero as n — oo. Indeed, since E |U f;(W)|*—
gjj = 0,7 =1, it holds for all m > 1

T 2 1 e 2 _ 1 .
‘ZZ‘UJC 2—sy|” = ﬁE|Z\Ufj (W) =sj5]” < WE|’Ufm(W)”4-
i g=1 S j=1 Sm
By using Assumptions 1 and 2, ie., sup;eny E|f;(W)[* < nynp and E[UYW] < o, we
conclude
m m 9
B0t < max BIULHINI(Y7) <ot (D7) (A1)
j=1 j=1

Let m = m,, satisfy condition (2.4) then E||Uf7 (W)|* = o(ns?, ). Therefore, it is
sufficient to prove o

V2(sm,m 1ZZUUJ‘" [ (Wir) 5 N(0,1). (A.2)
£ g=1
Since G, = o(1) this follows from Lemma A.2 and thus, completes the proof. O

PROOF OF THEOREM 2.2. Similarly to the proof of Theorem 2.1 it is sufficient to study
the asymptotic behavior of n~! D5y iy Uil fT (W) fT(Wir). For any finite m > 1 we
obtain

E\% DD UU (W, ZZUUf frown|”

e iy
E [E[UfUQQIWh Wol ( > f}(Wl)ff(W2))2] < "47717( > Tj>2
j>m ji>m
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which, since }_;-;7; = O(1), becomes sufficiently small (depending on m). Note that
(ﬁ Y UfTWe), ..., f S U (Wh) —>N(0 Ym). Hence, for any finite m > 1 we have

ZK%ZMWM)iZM%

with A;, 1 < j < m, being eigenvalues of X,,. Moreover, we conclude for m > 1

2

iZZﬂwmmWWWZZO%ZWWWW—iZMWWM
j=1 i’ j=1 ‘ '
Z ]le SJJ
J=1

It is easily seen that > 7 ( ]X%] sj;) has expectation zero. Hence, following the lines

of page 198-199 of Serfling [1981] we obtain that me ( ]X%j — sjj) becomes sufficiently
small (depending on m) and thus, completes the proof. O

PROOF OF PROPOSITION 2.3. For ease of notation let d0,(-) := gfln/f ~1/25(.). Under the
sequence of alternatives (2.6) the following decomposition holds true

SﬁwﬂZ%@mwﬁ2*Zwm .425 W)

+||n—125 )H —: I, +2II, + ITI,.

Due to Theorem 2.1 we have (v/26y,,,) ™! (n I, — fim,, ) 4 N(0,1). Consider II,,. We observe
2\ 1/2

nE (L] < 3 (B IUSW)REI2) 500+ (nE| 3 5, U 5,0)[)
7j=1 Jj=1

<03 T (EI5u(2) ;W) )2 + onp/ml|Tonllw-
j=1

From the definition of ¢,, and condition (2.4) we infer that nE |I1,,| = 0(¢,,,). Consider 111,.
Employing again the definition of 8, it is easily seen that ng,,} 111, = Do T [T<5] +o0p(1).
We conclude (v/26, )~ 'nIII, = 271/2 dois1 5j2 + 0p(1), which completes the proof. O

PROOF OF PROPOSITION 2.4. Let &,(-) := n~'/2§(-). Similarly to the proof of Theorem
2.2 it is straightforward to see that under the sequence of alternatives (2.7) it holds

*ZZU” )(Us + 6n(Zir)) [} (Wi) £ (W)

i#i j=1

—Z(VZUJ@ i3Sz

M FHLATS

d o
S Axa;(65/)
j=1

similar to the lines of page 198-199 of Serfling [1981] and hence the assertion follows.  [J
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PROOF OF PROPOSITION 2.5. If H fails we observe that > 222, 7;[T'(¢o—¢0)] = Jip LT (o—

©0)(w)pw (w) /v (w)Pv(w)dw > C||LT(p — ¢o)||%, > 0 since pw/l/ is umformly bounded
from zero and LT is nonsingular. Now since ¢, &, + fim, = o(n) it is sufficient to show
Sn= 3721 T[T (e = 0)]7 + 0p(1). We make use of the decomposition

Zmnlzy 00(Z:)) f;(Wi) — [T( — o)l

7j=1
+QZTJ’(”_1Z(E’—@O(Zi))fj(wi)—[T(SO—SOO)] )T (v = o)l ZT] (¢ —¢0)]
j=1 i
- In YOI+ II1,.

Due to condition E|Y — ¢o(Z)[* < oo it is easily seen that I, + I, = 0,(1), which proves
the result. O

PROOF OF PROPOSITION 2.6. We make use of the decomposition

P((V250,)7 (7 S0 = tim,) > 010 )
> P~ S 6() = ul 2 o, O+ 2 S U, W = o,

> V26m,q1-0 + 2[( _12 —o(Z ZUszn )

Uniformly over all ¢ € GP it holds
n! Z i) iy (W ZUfm Wi)) = Op(max(v/nl| LT (0 — o) W Sm,)) -

Indeed, this is easily seen from
E| zn: T E[(0(2) = 0o(2) [;(W)] D Uit (Wi)|* < o®npm i E[(o(Z) —¢0(2)) [T (W))?
j=1 i j=1

and further, denoting vj; = (¢(Z;) —o(Z:)) f;(W) —=E[(¢(Z) = wo(2)) f;(W)], 1 < j < mip,

1 <i < n, from

n~! Z Z %5 Ui f(W,

Mn

_n-l Z 77 B [Wij1] E [Uij(W)fj’(W)]

i#£i j=1 J,j'=1
<C Z 7T B [U2 f;(W) f:(W)] < Co®E | Zijj(W)‘Q = O( Tj2>'
jg'= =1 =

Thereby, for all 0 < &’ < 1 there exists some constant C' > 0 such that

P((V25m) " (180 = i) > d1-a)
> B(||n™* 3(0(20) — 2olZ)) f, (W) [* o+ |n =2 30 Ui, (W) |* = o,

> V26, @1 + Cmax(VAILT (¢ = ¢0) lwsm,) ) — €'
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Note that Hn‘l/z > Uif;ln(Wi)HQ = im,, + Op(Sm,,) due to Theorem 2.1. Moreover,

mn

2 32 Z)) F, (W) |[* 2 0 37T — o)l

j=1
—2\<Z<so<z> 0(Z:)) f 3, (Wi) =1l LT (2 = 0) s (LT (= 90)ma) = T+ T
Consider II,. For1 <j<mylets; =1; [T(cp—gpo)]j/(zjﬁl [T (o —w0)l; 2) /2 then clearly

> 5 = land thus E | >0 s;f;(W )|? < ngnp. Further, since sup,c z |<p(z) wo(2)? < C
we calculate

E |11 = nE| 3" 75 ((0(2) ~ ¢0(Z) (W) ~ [Tp ~ 20)) [T — 20l |

j=1

Zm ) E]Zsj (20507 = 0(ILT (e - wo)lih)

Jj=

and hence I1,, = Op(y/n||LT (¢ — ¢o)||w). Consider I,,. Note that ||LT (¢ — ¢o)||% < C for
all ¢ € Gh we have I,, > Cn|| LT (¢ — ¢o)||%, for n sufficiently large. Since on G we have
n||LT(p — 0)||3 = psm, We obtain the result by choosing p sufficiently large. O

A.2. Proofs of Section 3.
For ease of notation, we write in the following ¢(-) for ¢(-,9o) and ¢y, (-) for ¢y, (-, Vo).

Proor or THEOREM 3.1. The proof is based on the decomposition under H,,

Sk = Hn*ZUJ@(W»HQH@*ZUJ@( PG O(Zis D)) F 1, (W)

i

+ [|n? Z O(Zi,0n)) @-)IIQ =1I,+2II, + III,. (A.3)

Due to Theorem 2.1 it holds (\f Smn )~ (nI — ) 4 N(0 (0, ) Consider III,. It holds
Zi, 0

O(Zi) — 3(Zi,0n) = bo(Zi) (90—T) + (D0 —0n) b99(Zi, ) (90— V) /2 for some T, between
¥y, and Jp. From the bounds imposed in Assumption 6 (i) we infer
kE mp k' mn
nIIL, < 2n[[9o—0,? ( DD HlToali+> > 7l Z b9, (Z )—=[T¢s,1;) >+0p(1)-
=1 j=1 =1 j=1
For each 1 <1 < k we have
Mn ) mMn 9 )
S moni =Y ([ @)t w)dn) < [ (T6s) @ w)/vw)Prw)de
j=1 j=1 W w

<l Toallty < 1pE |69, (Z,90) < mpmg  (A4)

by applying Jensen’s inequality. Moreover, we calculate

kE mn

ZZE‘*Z@% [T¢ﬁl]j‘2<

=1 j=1

s kmy,

0 up B 60, (2) W) < oV (A.5)

]’121
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These estimates together with |9y — 1/9\nH = 0, (n~Y2) imply nIIT, = 0y(sm,). We are left
with the proof of nIl, = oy(spm, ). We observe for each 1 <1< k

E| mz (n 2 U7 (07t 3 0020 1507:) = [Tul) )
<n V2 Z (ENU L)) 2 (B 160, (2) ;1)) = O (n1/2 Z 1) = olsm,)-
Now since n/2(9g — 9,,) = O,(1) we infer
nll, = n'/?(Wy — 9,)" il 7 (Q;}Ln-lﬂ > Ui (W) E[¢19(Z)fj(W)]> + op(1).
= ;
We observe for each 1 <1 <k

o2 _IE‘ZTJZUfJ T%M <sn anZTqbﬂU\%niaQﬁzW
[

j=1

which implies nll, = 0,(Gn,) and thus, in light of decomposition (A.3), completes the
proof. O

PrROOF OF THEOREM 3.2. For 1 < j < m,, we make use of the following decomposition

_1/zzf (U + &(Z) — &(Zi, Oy, ) ‘1/22( Zk:[Tqﬁm] i (V, ))
=1
+Zk:< 712]@ i)¢0,(Zi) — [T, )( 1/2Zhl )

=1

£y 25 WDBa (2714 0p(1) = Ao + Baj + oy +0p(1) - (A6)

=1
where ri, = (r1,...,7%)"
H, we have

is a stochastic vector satisfying 7, = 0,(1). Consequently, under

nSk = TjAL; 2 7 Aui(Buj + Cnj) + > 7i(Buj + Cnj)® + 0p(1).

j=1 j=1

Clearly, for all 1 < < n the random variables U; f] (W;) + E [fT(W)gs(Z)! | he(Vi), 1 <
j < my,, are centered with bounded second moment. Due to the proof of Theorem 2.2 it

is easily seen that Zv]n:nl T A% P4 X3;- Inequality (A.5) yields Y 7™ B2, = o0p(1).

=17
Since -7 [To2 < 1 we have | BLfm, (W)oa(2)rell? < knptollrell? = op(1) and hence
> C’2 op(1 ) Finally, the Cauchy-Schwarz inequality implies 3 7" 7 Ay (Bnj+Chnj) =
op( ) Wthh completes the proof. O
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PROOF OF PROPOSITION 3.3. Without loss of generality we may assume 6 = §, (otherwise
replace ¢(Z;) by ¢(Z;) + ¢9(Z;)' E[6(Z)¢9(Z)]. Consider the case ,,' = o(1). Under the
sequence of alternatives (2.6) the following decomposition holds true

SE = |0t S (U + 2020 (Z0) £, (W)

+ 2<an<Uz- +op P 261 (Z0) fry (Wi),m ™ Z 3(Zi,0n)) Fry (W)
+||n7? Z 3(Zi,0n)) Frn (W) ||
Due to Proposition 2.3 and the proof of Theorem 3.1 it is sufficient to show
(71D 0u(Z) f, (Wi) ™12 Z Zi 9n)) fn, W) = 0p(/Sm)- (AT)
Indeed, since d;, = /75 E[6.(Z)f;(W)] we have
imm D _(6(Z0)=0(Zi 9)) f5(Wi) = V/n(Do—0n)' mZ 051 Elgo(2) f;(W)]+o0,(1)
= ; -

< Mp Mg V[P0 — In I Z L+ op(1) = Op(1)

and hence (A.7) holds true.
Consider the case 7" 7; = O(1). We make use of decomposition (A.6) where U; is

replaced by U; + n_l/Q(h( ;). Similarly to the proof of Proposition 2.4 it is easily seen
that Y7 7 A% LN > 321 A x3;(8;./AY). Thereby, due to the proof of Theorem 3.2, the
assertion follows. O
PROOF OF PROPOSITION 3.4. Consider first the case ¢! = o(1). Similar to the proof
of Theorem 3.1 we observe that ||[n=t3",(¢(Zi,¥0) — ¢(Zi,1/9\n))f;n(Wi)||2 = 0p(1) and
It 325 (Vs = ¢(Zi,90)) f, (Wil = 32521 75[T( — 6(-,90))] + 0p(1). Thus, the result
follows as in the proof of Proposition 2.5. In case of Z;”Z"I 7; = O(1), we obtain similarly
M — 2 00
that SF = S 7 |n 1 %, (Y~ 6(Z0, 90))f5(Wi) 2+ 0p(1) and hence, S5 = S5 7,[T(eo —
(-, 90))]7 + 0p(1). -
PROOF OF PROPOSITION 3.5. Consider the case g,,! = o(1). The basic inequality (a —
b)2 > a?/2 —b?, a,b € R, yields

P((\@Cmn)_l(n SP— an) > ql,a>

>P(1/2Hn*”22 6(Zis90)) Fru W) +Hn*1/QZUf;n WolI* = s,
> \/>§mnq1 a+2|<n IZ Zlaﬂ ZUfT
+|n 1/22 6(Zir00) = &(Zi, ) fm, W) (A
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From the proof of Theorem 3.1 we infer Hn_1/2 Zi(QS(ZZ-,@n) - ¢(Z¢,190))f;1n(Wi)H2 =
0p(Sm,,) and

—12 $(Zi, V) ZUfZM
=<n*Z(so(Z> 3(Zi,90)) fr, (W, ZUfmn (W3)) + 0p(sim,,)-

Thus, following line by line the proof of Proposition 2.6, the assertion follows. In case of

Z;ﬂ”l = O(1) the assertion follows similarly. O

A.3. Proofs of Section 4.

In the following, we denote [Q]y by = 10D en, (Zi)er, (Z;)'. By Assumption 7, the eigen-
values of Eleg, (Z)e, (Z)"] are bounded away from zero and hence, it may be assumed that
Elex,(Z)ex, (Z2)"] = Ik, (cf. Newey [1997], p. 161).

PROOF OF THEOREM 4.1. The proof is based on the decomposition (A.3) where the esti-
mator ¢(-,v,) is replaced by @, (-) given in (4.1). It holds nII1l, = 0p(Gmn, ), which can be
seen as follows. We make use of

11,/2 < H*Z B0l ) = B () Sz, VI + [ 3 (B ) (20 S5, (W

=: A1+ Ape.

Consider A,,1. We observe

Ant < 2| Elf7, (Wer, (2)Q;,) (1Qlk, [olk, —n ™" D Yiew, (Z:))]”

n
%

mn

+ 2| Bk, <P0—<PkﬂHZZTJZ|n 1Z€l — [Tl
7j=1 =1
= 2B, + 2By, (A9)

For B, we evaluate due to the relation [@],;11 =TI, — [@],;}([@];Ln — Ij,) that

< 2| Elf, (W 12 Ey,00(Z;) — Yy)ex (Zi)H2

2| B[, (W)ex, (2)]][1(Q) Ian @1 Hn’lZ<Ekn¢o(2i>—Yi>%<Zi>H2-

Since the spectral norm of a matrix is bounded by its Frobenius norm it holds

E[|(@lk, — In. |I* < *ZE\el er(Z)2 < nen k2.
LI'=1
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Further, from E[(Ey,¢0(Z) — Y )ex, (Z)] = 0 we deduce

E| E[f},, (W 12 (B, p0(Zi) = View, (Z)|”
n! Z"E | ZE 00V er(2)) (Br,p0(Z) — Y)er(Z) 2

mn kn
< Cnpn™ Y S E[f;(W)e(Z)] = O(n”  kn)
j=1j=1

where we used the definition of F, and that E[U?|Z] is bounded. Moreover, since the
difference of eigenvalues of [Q]kn and I, is bounded by [|[Q]x, — I, ||, the smallest eigenvalue

of [Q] &, converges in probability to one and hence, ||[Q o) knl||2 = 140,(1). Further, note that
IELf7, (W )er, (2)1]17 < S0 Yok BLf(W)ei(2)]? = O(ky). Consequently,

1| Er, 0 — i, 17 = Op(kn) (A.10)
and since k, = 0(Sy,, ) we proved nBp1 = 0p(Spm, ). In addition, applying inequality (A.5)

together with equation (A.10) yields nBy2 = 0p(Sm,, ). Consequently, nApi = 0(spy,, ). Con-
sider Ay2. Similar to the derivation of (A.4) we obtain

E||ln™" Y (B 00) (Zi) (W) < 20| B 00l % + 2071 > BB 00(2) £;(0)2.

j=1

We have
S BEIEL ) 2) L) =0 (31 Y 75) = olom,) (A11)
Jj=1 j=1

and nHE,i-ngooH% = O(nq/,;nl) = 0(Sm,, ). Hence, nI11, = 0y(Gm, ). Consider II,. We calculate

i \ZTJZUL ) (ol Pli)' (' D e (205 (W) —E [en () £5(W)] )|

37 S ek — ) (S Ui w 1) |
=1 1=1 i
3 (S0 (7 X B ol 205, 07)  ELBL e0(2) 7))
j=1 i i
(0 0| o o

Consider Cp1. Applying the Cauchy-Schwarz inequality twice gives

mMn kn /
Con < 1 Beuo— |2 Y S U590 (3 It 3 ealZ0) £50W)—Elen(2) ;W )2)
j=1 i =1 i
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From E |3, Uif;(W;)|? < nnso?, relation (A.10), and inequality (A.5) we infer Cp,; =
0p(Sm,,) due to condition (4.2). For Cp2 we evaluate

kn Mn

B 1/2
2 < || Bk, 0 — SoanZ(Z 1> U (W) [T )
I=1 j=1 i
Now 77 [T] o = O(ky) together with (A.10) yields Cpa = 0,(1). Consider Cps.

Since E[UZIW} < 0% we conclude similarly as in inequality (A.11) that
S 1/2 1/2 172
ECw <> m(E[ULW)P) 2 (EIEL0o(2) £;(0)2) :O<’Ykn/ ZTJ> = o(Sm,)-
j=1 j=1

Consider C,4. We calculate

Mmn

E|Cpal® < nmpo® > [TEg ¢ol3 < np o |TEE wollfy = O(ny, ') = 0(Gm,,)-
j=1

Consequently, in light of decomposition (A.12) we obtain nll, = o(<y, ), which completes
the proof. ]

PROOF OF THEOREM 4.2. Employing the equality [Q] = Iy, — [@];ﬂl([é)\];ﬁ — Iy,) we
obtain for all 1 < j < m, o o

DL ) (Ui + v0(Z:) — 21,,(2)
-~ 2 (£3(Wa)Us + ELE (Wew, (2) e, (Z) (90(Z:) Vi)
+ 0 2N B[ (W)er, (2)1Q) ([Qk, — T, ) er, (Z0) (Er,00(Z:) = Vi)
+ (7Y HWer, (Z0) — B [£;(W)ex, (2)'] ) Va(lpole, — @, i)
n V2N B0 )en, (2) ek, (Z) B, ¢0(Zi) = Anj + Buj + Cnj + D (A13)
Due to Assumption 7 (i) we may assume that {ej,...,e;} forms an orthonormal system
in £% and hence ) E[f;(W)e;(Z)]? is bounded uniformly in k. Thereby, we conclude

D T D sk, B (W)e(Z)]e(r) = o(1). Now following line by line the proof of Theorem
2.2 we deduce

Mn - ) . o )
ST ZTJE\ ”220*(1; DB Waa(z))| +op(1) 4 X0,
Jj=1 °

>1 J=1

Moreover, we see similarly to the proof of Theorem 4.1 that Z T (BZ]' + C’gj + D%j) =
0p(1), which completes the proof. O
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Proor oF LEMMA 4.3. Note that the squared Frobenius norm of E’mn — Y, 1s given by

i) IZY B (Z0)) 2T (W) T (W3) — s
4l=1
< |Be, — Brells Z E [|lex, (2)12£7 (W) f7 (W)

J,l=1

£ 35 [(BE oo 2)2 70 57 09)] + (1)

7,l=1

< I, — Engl50((35)) + 06t 3o m)?) + opl1) = op(1)
j=1 i=1

by using relation (A.10). Consequently, the Frobenius norm of fmn equals G, + 0p(1).
Consistency of the trace of X, is seen similarly. O]

PROOF OF PROPOSITION 4.4. Similar to the proof of Proposition 3.3 it is sufficient to show

(71D 0(Z) frn, (W), m ™2 Y (20(Zi) = B, (20) s (W) = 0p(Voms)- - (A-14)

By employing Jensen’s inequality and estimate (A.10) we obtain

> 518l Y (Bro(Z) ~ B, (Z0) ()
j=1 i
< VAITBIIT (B, 20— B, low + 0p(1) = 0p(sm,).

Similarly to the upper bounds of Cp3 and C,4 in the proof of Theorem 4.1 it is straight-
forward to see that » " 7;(T6]n~ 125, Ej ¢0(Zi) fj(W;) = 0p(sm,) and, hence equation
(A.14) holds true. C0n51der the case > 1 7; = O(1). We make use of decomposition (A.13)

where Uj; is replaced by U +n125(Z (Z;). Similarly to the proof of Proposition 2.4 it is easily

seen that > 0™ jA%j DL A le(é /A§). Thereby, due to the proof of Theorem 4.2,

the assertion follows. O
PROOF OF PROPOSITION 4.5. Similar to the proof of Proposition 3.4. O

PROOF OF PROPOSITION 4.6. We make use of inequality (A.8) where qb( ,A ) is replaced
by @y, . From the proof of Theorem 4.1 we infer Hn’l/Q > i@k, (Zi) — po(Zi) [, ( H
0p(Sm,,) and

—12 = Bron (Z0)) Fr (W ZUfmn
= n_lz@ i) — ol ZUf:nn +0p(<mn)

uniformly over all ¢ € Z};. Thus, following line by line the proof of Proposition 2.6, the
assertion follows. O
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A.4. Proofs of Section 5.

Recall that [T, = E[eg(W)eg(Z)']. Further, we denote [T]E =n 30 e (Wier(Z:)t
and [g]y = n 1ZZ L Yiep(W;). In the following, we introduce the function gpkn() =
ekl(-)t[T}k [9]k,, which belongs to £%. For all k& > 1 let us denote Q = {||[T ] h <

vn} and Uy := {||Rk||||[T ]EIH < 1/2} where R, = [T ]k: — [T]g. Note that Elg =
P(Qg ) = o(1) (cf. proof of Proposition 3.1 of Breunig and Johannes [2011]) and, hence
1o, = 1+ 0p(1). For a sequence of weights w = (w;);>1 we define the weighted norm

16]lw = (X201 wi([5 d(2)e; (2)r(2)dz)?) 2.

PROOF OF THEOREM 5.1. For the proof we make use of decomposition (A.3) where the
estimator ¢(-,9,) is replaced by @y, given in (5.2). Consider I1I,. Observe

I, < 2fln~ 12 Pho (Zi) = Pro(Z2)) fa (W) |I?

+ 2”77/71 Z (gokn(Zz) — (po(ZZ))f;;LJ(WZ)”Z = 2An1 + 2An2. (A15)

Consider A,,;. Making use of the relation [ﬂ@[ﬂ; [k =0k = 17D Sy Wi) (ke (Zi)—
Y;) we obtain o

At < A| Elfm (W i~ 3 i W i (2 =)

+ 4| El i, (W )en, (2)[T ],;n kol kf;n—lzf@vv»mn(zi)—muz

mMn

+ 2|l ek, = Pralls D7 sz Y el (W) = [Tl
J=1 =1 %
=4B,1 + 4B, + 2B,3.

From Lemma A.1 of Breunig and Johannes [2011] we deduce [[n~/23", e, (Wi) (o, (Z3) —
K)||2 = Op(ky) and since HE[fM(W)eki(Z)t][T],;}H = O(1) we have nB,1 = 0(sm,)-
Further, consider By2. By employing H[f]ng 1y, < 2||[T]£1|| and ||[f]£1||2 Lo, < n for all

k > 1 it follows
Bua gy, (Lo, +1og,) = O(4NTIE P I Re, P I~ PR AURICHEARS ]
+ 1 R, [Pl lszn ) (n (2 = Vi) P 1w, )
Further, since n|| Ry, ||> = Op(k2) (cf. Lemma A.1 of Breunig and Johannes [2011]) and

n|| Ry, |12 n~ 2y, ek, (Wi) (k. (Zi) = Y3) |2 lis; = 0p(1) (cf. proof of Proposition 3.1 of
Breunig and Johannes [2011]) it follows nBy2 1q,, = 0(Gm,). This together with estimate
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(A.5) implies nAyp1 = 0p(Sm,, ). Consider A,». We observe
E Anz < 2T ¢k, — @o)lli + 207 E || (¢r, (2) = ¢0(2)) frm,, W)

< ol ool 2 S8 ( [ (g amnz) S 7 SRl 0

I>1 =1 =1
v 2 In
:O<ﬁ kn — 0 24 kn — %0 2 7"). A.16
%nHw wolly + e, — !Hnm ]221 i) (A.16)

where we used Lemma A.2 of Johannes and Schwarz [2010], i.e., ||¢r, — ¢ol|?, = O(wkn’yk_nl)
for a nondecreasing sequence w. Condition (5.3) together with the estimate k2 < o* Z;nznl T
for n sufficiently large implies nA,2 = 0p(sm,, ). Consequently, due to (A.15) we have shown
nlIl, = 0y(Sm, ). The proof of nll, = o,(¢m,) is based on decomposition (A.12) where @y,
and E,ﬁn ¢o are replaced by @, and ¢, — @o, respectively. Consider C,;. We calculate

/
o < e, — 90l ZT;!ZUL (Zvﬂanez wo - )

Since /nl||@r, — ¥k, llv = op(cyln/f) we obtain, similarly as in the proof of Theorem 4.1,
Cn1 = 0p(Sm,, ). Consider Cy2. Again similarly to the proof of Theorem 4.1 we observe

nQ—);T]Z ]l/ (Phn — Pha)(2) dZ(ZUfJ )‘

< (B, — pl2) (o Zvﬂz 113) "+ 0p(1) = ofs,)

by exploiting ZT:’H[T]?l < mpllTellfy, < dnv;. Consider Cps. Since E[U?W] < o we
conclude similarly as in inequality (A.11) using Lemma A.2 of Johannes and Schwarz [2010)]

Mmn

BCus <037 (Bl (2) o200 ) <t T
j=1

Consider Cj4. Again exploring the link condition T € TUD and Lemma A.2 of Johannes
and Schwarz [2010] we calculate

mn
—volly Z 7j = 0(Sm.,)-
j=1

E |Cpal? MZ (k. — 90)]5 < no||T(pr, — o)l

nvg,
< nodpr, — wollf < ADdpo— = llok, = woll3 = o(sm,.)-

n

Consequently, the estimates for Cp1, Cpa, Cpz, and Cpyg imply nll, = 0,(Sm, ), which
completes the proof. ]
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PROOF OF THEOREM 5.2. Observe [f]@[T},;Ll [k =[Gk = 171>, €k, (Wi) 0k, (Zi) = Vi)
and hence, for all 1 < 7 < my, o

’1/2Zf V(Ui + 00(Z:) — Bk (2:))
—n*”Z( Wo)Us + E [0 )ex, (2)'][TIg ex, (W) (v, (20) — ¥7))
—WZE W)e, (2)'] [T, R [Ty e (W) (ko (Z5) = Vi

)
(7 Wl (2B [ (W)e <Z>}) £ (7 Y ), (20-30)

+n 1/22 (20(Zi) — @1, (Zi)) f;(Wi) = Anj + Bpj 4+ Crj + Dpj. (A17)

Consider A,;. For each j > 1, note that || E [f;(W)ex(Z)!] [T, ]| is bounded uniformly in
k and further that ]E[ekl(W)(gokn (Z) —¢o(Z))] = 0. Now similarly to the proof of Theorem
4.2 we conclude

Mp 9 00
ZTjAgj_z S| sz 1 W) = (W) | +0p(1) 5 3N,
j=1 j=1 j=1

Moreover, as in the proof of Theorem 5.1 it can be seen that > 7™ Tj(B,?lj + C’T%j + D?lj) =
0p(1), which proves the result O

PROOF OF PROPOSITION 5.3. Consider the case s,,' = o(1). Further, under (5.5) we ob-
serve by following the upper bound for A,; in the proof of Theorem 5.1 that

S0 2 G20 — w2 £ )|

j=1 i

=3 | S Bk (2) — o (Z) £ (W)
j=1 i

+ Op (gmn )

+Z‘<mnz5 Wi)

J=1

Consequently, the result follows as in the proof of Theorem 5.1. For 7" 7; = O(1) we

conclude similarly. O

ProOOF OF PrROPOSITION 5.4. Following the lines of the proof of Theorem 5.1 it can be
seen that |n=1' > (G, (Zi) — vk, (Zi)) T ( Wil = op(1) with ¢ € F§. On the other

hand, ||n=" 32, (on, (Zi) — 0(Z) fr,(WlI? = ClIT(or, — #)fiy + 0p(1). Further, since
|T(pk, — @)% = llg — Tol?, + o(1) the result follows as in the proof of Proposition

3.4. ]
PROOF OF PROPOSITION 5.5. We make use of inequality (A.8) where <Z>( ,A ) is replaced
by @, . From the proof of Theorem 5.1 we infer Hn_1/2 i Prn (Zi) — o Zi) . ( H
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0p(Sm,,) and
n! Z ~ o (Z Z Uif,, (W
! Z D) f (W, ZUfmn ) + 0p(im,)

uniformly over all ¢ € 7). Consequently, following line by line the proof of Proposition 2.6,
the assertion follows. O

A.5. Technical assertions.

Let us introduce X;i := v/2(Gm, n)~ Z W UiUi f ( 1)f;(W1’) and

i—1 .
1—1 Xii fori=2,...,n,

@ni 1= { 0, fori=1and i > n. (A-18)

Then clearly

(V26m,n) 1ZZUUf ] (Wir) = V2(6m,n 1ZZUUf £ (W)

i j=1 1<i/ j=1
- ZXM’ - Zan
i<t
Let B,; := B((Zl,Yl,Wl), ooy (ZiyYi,Wy)), 1 < i < nyn > 1, be the o-algebra generated

by (Z1,Y1,Wh),. (Zi,Y;,Wl) Since U;f7(W;), 1 < i < n, are centered random vari-
ables it follows that {(>°7_; Qnir, Bni), @ = 1} is a Martingale for each n > 1 and hence
{(Qni, Bni), i > 1} is a Martingale difference array for each n > 1. Moreover, it satisfies the
conditions of Proposition A.1 as shown in the following technical result.

PROPOSITION A.1. If {(Qni, Brni), i = 1} is a Martingale difference array for each n > 1
satisfying conditions

ZE |Quil> <1 foralln > 1, (A.19)
ZQ =1+ 0,(1), (A.20)
$1>111>|Qni| = 0p(1) (A.21)

then > 72, Qni 4 N(0,v).
Proof. See Awad [1981]. O

Note that this result has been also applied by Ghorai [1980] to establish asymptotic nor-
mality of an orthogonal series type density estimator.

LEMMA A.2. Let Qp; be defined as in (A.18). Let Assumptions 1—4 be satisfied and assume
(Z] A TJ)S = o(n). Then conditions (A.19)—(A.21) hold true.

36



Proof. Proof of (A.19). Observe that E[X1;X1#] = 0 for ¢ # i’ and thus, for i = 2,...,n we
have

) 20— 1) <&, ,» .

E|Qnil* = E [ X1t +Xi14]* = (i—-1) E| X = <2 5 ) g DI HUALIHUA]
Mn ]:1
2i—1) Lo e 2= 1)
= "o > (BP0 = =
Mn j,jlzl
by the definition of ¢,,,. Thereby, we conclude
= = n—l 1
E|Quil* = =1-= A.22

> ElQnd g . (4.22)

which proves (A.19).
Proof of (A.20). Using relation (A.22) we observe

n n
2
E|Y QL—1"=) EQy+2> EQLQL —1+o0(1) = I, +II, — 1 +o(1).
=1 =1

1</

Consider I,,. Observe that

4_E)n\[ ZTJUfJ ZU (W,

%(iw)giﬁrwﬂww‘(a BTN+ 36— 16— 2)3)
j=1

=4
i, N

i—1
E|Quil* =E | X
=1

where we used that E[U f;(W)] = 0. Since Y1 ; 3(i—1)(i—2) = n(n—1)(n—2) we conclude

< (Xn) (MY ® UL a1 n-2) Y £ EUL0))
Mn = =1 7j=1 j=1

Therefore, applying max;>1 E |U f;(W)|* < nynp o and > =o(n 1/3) yields I,, = o(1).
Consider IT,,. We calculate for 7 < 7’

=1 i—1 =1

2 (Zxk) (Z X,%) n (Z X,fi) ( 3 Xka>
k=1 k=1 kAR
+ < ZZE inXk’i) (liX;f,/) + ( 125 inXk’i) ( Zi in’Xk’i’>
kAR k=1 kAR kAR

=: Aii’ —+ Bii’ + Cii’ + DZZ/

1) = Yo (i 1) ~2)/2 =
(B - 2 - 1)/2 =

Consider A;;. Exploiting relation (A.22) and using ) ,_./(i —
n(n — 1)(n — 2)/6 and further »~, (i — 1)(i' = 3) = >0 _

l/

37



n(n —1)(n —2)(n — 3)/8 we obtain

2) EAy =4EX15X35 ) (i —1)+ 2B X5)? ) (i — 1) —3) +o(1)

i<i’ 1<y’ a3
mn 7,37,0LU=1
D903y

Moreover, applying the Cauchy-Schwarz inequality twice gives

mn

> s BUST(W)F W) (W) W) < max E|U£(W)|*( Z Fm,sﬂ)
gLr=1 SIS =1
Mn 9
<nrmpotd, (Dom)
j=1

Thereby, it holds 23, .~ EA;7» = 1+ o(1). Now consider B;y. Since {fi};>1 forms an
orthonormal basis on the support of W we obtain

i'—1

i—1
E (ZX,%) ( 3 X X ) —9 ZEX,WXMX”
k=1 £k
S §% B[ W (VOUS (W) £5072) 3 a7 (W) f7 W2

S Jy'=1 L'=1

8(i—1 = 8(i — 1)aSngmy /=
<MD (S s on o) < LT (55
mn Ji'=1 mn j=1

This, together with relation (A.22), yields ), _; E By = o(1). Further, it is easily seen that
Y ici ECiir = o(1). Consider D;yr. Using twice the law of iterated expectation gives

i—1 =1 i—1

E D,y = E ( 3 inxkli) ( 3 Xka> =43 E X Xpi X Xpvi
kAR kAR K<k’
i—1
=4 Z B [ X Xppri B[ Xpoir Xt | Yiey Zio, W), Yirs Zir, Wi ), (Ya, Zi, W)
K<k’
8 i—1
= > E {E Xi Xil Yies Zio, W), Yirs Zr, Wi )] Z $ij' Uk f] (W) Ui (Wk’)}
s =1
8 , . 8o .
= e E) leﬂ,Ulf] (W)Usf] (Wg)] (i-D6-2) < 75" (z— (i — 2).
7‘7
Since ¢;,} = o(1) we obtain
8ot 20’4 2nn—1)(n—2)(n—3
ZEDW\ anz—l i—2) p I I ):0(1)

3¢2 nt
1<i’ g’ Mn
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and hence 23", _, EQ2%.Q2., =1+ o(1).
Proof of (A.21). Note that P(sup;>; |Qnil > €) < i P(Q2%, > £?) and, hence the
assertion follows from the Markov inequality. O
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