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This paper proposes several tests of restricted specification in nonparametric
instrumental regression. Based on series estimators, test statistics are estab-
lished that allow for tests of the general model against a parametric or nonpara-
metric specification as well as a test of exogeneity of the vector of regressors.
The tests’ asymptotic distributions under correct specification are derived and
their consistency against any alternative model is shown. Under a sequence
of local alternative hypotheses, the asymptotic distributions of the tests is de-
rived. Moreover, uniform consistency is established over a class of alternatives
whose distance to the null hypothesis shrinks appropriately as the sample size
increases. A Monte Carlo study examines finite sample performance of the test
statistics.

Keywords: Nonparametric regression, instrument, linear operator, orthogonal series
estimation, hypothesis testing, local alternative, uniform consistency.

JEL classification: C12, C14.

1. Introduction

While parametric instrumental variables estimators are widely used in econometrics, its
nonparametric extension has not been introduced until the last decade. The study of non-
parametric instrumental regression models was initiated by Florens [2003] and Newey and
Powell [2003]. In these models, given a scalar dependent variable Y , a vector of regressors
Z, and a vector of instrumental variables W , the structural function ϕ satisfies

Y = ϕ(Z) + U with E[U |W ] = 0 (1.1)
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for an error term U . Here, Z contains potentially endogenous entries, that is, E[U |Z] may
not be zero. Model (1.1) does not involve the a priori assumption that the structural
function is known up to finitely many parameters. By considering this nonparametric
model, we minimize the likelihood of misspecification. On the other hand, implementing
the nonparametric instrumental regression model can be challenging.
Nonparametric instrumental regression models have attracted increasing attention in the
econometric literature. For example, Ai and Chen [2003], Blundell et al. [2007], Chen
and Reiß [2011], Newey and Powell [2003] or Johannes and Schwarz [2010] consider sieve
minimum distance estimators of ϕ, while Darolles et al. [2011], Hall and Horowitz [2005],
Gagliardini and Scaillet [2011] or Florens et al. [2011] study penalized least squares esti-
mators. When the methods of analysis are widened to include nonparametric techniques,
one must confront two mayor challenges. First, identification in model (1.1) requires far
stronger assumptions about the instrumental variables than for the parametric case (cf.
Newey and Powell [2003]). Second, the accuracy of any estimator of ϕ can be low, even
for large sample sizes. More precisely, Chen and Reiß [2011] showed that for a large class
of joint distributions of (Z,W ) only logarithmic rates of convergence can be obtained. The
reason for this slow convergence is that model (1.1) leads to an inverse problem which is ill
posed in general, that is, the solution does not depend continuously on the data.
In light of the difficulties of estimating the nonparametric function ϕ in model (1.1), the
need for statistically justified model simplifications is paramount. We do not face an ill
posed inverse problem if a parametric structure of ϕ or exogeneity of Z can be justified. If
these model simplifications are not supported by the data, one might still be interested in
whether a smooth solution to model (1.1) exists and if some regressors could be omitted
from the structural function ϕ. These model simplifications have important potential since
they might increase the accuracy of estimators of ϕ or lower the required conditions imposed
on the instrumental variables to ensure identification.
In this work we present a new family of goodness-of-fit statistics which allows for several
restricted specification tests of the model (1.1). Our method can be used for testing either
a parametric or nonparametric specification. In addition, we perform a test of exogeneity
and of dimension reduction of the vector of regressors Z, that is, whether certain regressors
can be omitted from the structural function ϕ. By a withdrawal of regressors which are
independent of the instrument, identification in the restricted model might be possible
although ϕ is not identified in the original model (1.1).
There is a large literature concerning hypothesis testing of restricted specification of re-
gression. In the context of conditional moment equation, Donald et al. [2003] and Tripathi
and Kitamura [2003] make use of empirical likelihood methods to test parametric restric-
tions of the structural function. In addition, Santos [2012] allows for different hypothesis
tests, such as a test of homogeneity. Based on kernel techniques, Horowitz [2006], Blundell
and Horowitz [2007], and Horowitz [2011] propose test statistics in which an additional
smoothing step (on the exogenous entries of Z) is carried out. Horowitz [2006] considers
a parametric specification test. Blundell and Horowitz [2007] establish a consistent test of
exogeneity of the vector of regressors Z, whereas Horowitz [2011] tests whether the endoge-
nous part of Z can be omitted from ϕ. Gagliardini and Scaillet [2007] and Horowitz [2012]
develop nonparametric specification tests in an instrumental regression model. We like to
emphasize that their test cannot be applied to model (1.1) where some entries of Z might
be exogenous.
Our testing procedure is entirely based on series estimation and hence is easy to implement.
We use approximating functions to estimate the conditional moment restriction implied by
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the model (1.1) where ϕ is replaced by an estimator under each conjectured hypothesis. It
is worth noting that by our methodology we can omit some assumptions typically found
in related literature, such as smoothness conditions on the joint distribution of (Z,W ). In
addition, a Monte Carlo indicates that the finite sample power of our tests exceed that of
existing tests.
The paper is organized as follows. In Section 2, we start with a simple hypothesis test,
that is, whether ϕ coincides with a known function ϕ0. We obtain the test’s asymptotic
distribution under the null hypothesis and its consistency against any fixed alternative
model. Moreover, we judge its power by considering linear local alternatives and establish
uniform consistency over a class of functions. In Sections 3–5 we consider a parametric
specification test, a test of exogeneity, and a nonparametric specification test. The goodness-
of-fit statistics are obtained by replacing ϕ0 in the statistic of Section 2 by an appropriate
estimator. In each case, the asymptotic distribution under correct specification and power
statements against alternative models are derived. In Section 6, we investigate the finite
sample properties of our tests by Monte Carlo simulations. All proofs can be found in the
appendix.

2. A simple hypothesis test

In this section, we propose a goodness-of-fit statistic for testing the hypothesis H0 : ϕ = ϕ0,
where ϕ0 is a known function, against the alternative ϕ 6= ϕ0. We develop a test statistic
based on L2 distance. As we will see in the following chapters, it is sufficient to replace ϕ0 by
an appropriate estimator to allow for tests of the general model against other specifications.
We first give basic assumptions, then obtain the asymptotic distribution of the proposed
statistic, and further discuss its power and consistency properties.

2.1. Assumptions and notation.

The model revisited The nonparametric instrumental regression model (1.1) leads to a
linear operator equation. To be more precise, let us introduce the conditional expectation
operator Tφ := E[φ(Z)|W ] mapping L2

Z = {φ : E |φ(Z)|2 <∞} to L2
W = {ψ : E |ψ(W )|2 <

∞}. Consequently, model (1.1) can be written as

g = Tϕ (2.1)

where the function g := E[Y |W ] belongs to L2
W . Throughout the paper we assume that an

iid. n-sample of (Y,Z,W ) from the model (1.1) is available.

Assumptions. Our test statistic based on a sequence of approximating functions {fl}l>1

in L2
W . Let W denote the support of W and the marginal density of W by pW . Let ν be

a probability density function that is strictly positive on W. We assume throughout the
paper that {fl}l>1 forms an orthonormal basis in L2

ν(Rdw) := {φ :
∫
φ2(s)ν(s)ds < ∞}

where dw denotes the dimension of W . For instance, if W ⊂ [a, b] then a natural choice of
ν would be ν(w) = 1/(b− a) for w ∈ [a, b] and zero otherwise.

Assumption 1. There exist constants ηf , ηp > 1 such that (i) supl>1

∫
|fl(s)|4ν(s)ds 6 ηf

and (ii) supw∈W
{
pW (w)/ν(w)

}
6 ηp with ν being strictly positive on W.

Assumption 1 (i) restricts the magnitude of the approximating functions {fj}j>1 which is
necessary for our proof to determine the asymptotic behavior of our test statistic. This
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assumption holds for sufficiently large ηf if the basis {fl}l>1 is uniformly bounded, such
as trigonometric bases. Moreover, Assumption 1 (i) is satisfied by Hermite polynomials.
Assumption 1 (ii) is satisfied if, for instance, pW /ν is continuous and W is compact.
The results derived below involve assumptions on the conditional moments of the random
variables U given W gathered in the following assumption.

Assumption 2. There exists a constant σ > 0 such that E[U4|W ] 6 σ4.

The conditional moment condition on the error term U helps to establish the asymptotic
distribution of our test statistics. The following assumption ensures identification of ϕ in
the model (2.1).

Assumption 3. The conditional expectation operator T is nonsingular.

Under Assumption 3, the hypothesis H0 is equivalent to g = Tϕ0 which is used to construct
our test statistic below. Note that the asymptotic results under null hypotheses considered
in Sections 2–4 hold true even if T is singular. If Assumption 3 fails, however, our test has
no power against alternative models whose structural function satisfies ϕ = ϕ0 + δ with δ
belonging to the null space of T .
We will see below that the power of our test can be increased by carrying out an additional
smoothing step. Therefore, we introduce a smoothing operator L mapping L2

W to L2
W . In

contrast to the unknown conditional expectation operator T , which has to be estimated, the
operator L can be chosen by the econometrician. Let L have an eigenvalue decomposition

given by {τ1/2
j , fj}j>1. We allow in this paper for a wide range of smoothing operators.

In particular, L may be the identity operator, that is, no smoothing step is carried out.
We only require the following condition on the operator L determined by the sequence of
eigenvalues τ = (τj)j>1.

Assumption 4. The weighting sequence τ is positive, nonincreasing, and satisfies τ1 = 1.

Assumption 4 ensures that the operator L is nonsingular.

Remark 2.1. Horowitz [2006], Blundell and Horowitz [2007], and Horowitz [2011] consider
as a smoothing operator a Fredholm integral operator, that is, Lφ(s) =

∫ 1
0 `(s, t)φ(t)dt for

some function φ ∈ L2[0, 1] = {φ :
∫ 1

0 φ
2(s)ds <∞} and some kernel function ` : [0, 1]2 → R.

In order to ensure Lφ ∈ L2[0, 1] it is sufficient to assume
∫ 1

0

∫ 1
0 |`(s, t)|

2dsdt < ∞. Let

{τ1/2
j , fj}j>1 be the eigenvalue decomposition of L. By Parseval’s identity∫ 1

0

∫ 1

0
|`(s, t)|2dsdt =

∫ 1

0

∞∑
j=1

τj |fj(s)|2ds =

∞∑
j=1

τj

where the right hand side is only finite if the sequence τ decays sufficiently fast. In our case,
if we apply a smoothing operator L with

∑∞
j=1 τj < ∞ then our test statistics converges

also to a weighted series of chi-squared random variables. In addition, we allow for a milder
degree of smoothing or no smoothing at all and show below that then asymptotic normality
of our test statistics can be obtained. �

Notation. For a matrix A we denote its transposed by At, its inverse by A−1, and its
generalized inverse by A−. The euclidean norm is denoted by ‖ · ‖ which in case of a matrix
denotes the spectral norm, that is ‖A‖ = (trace(AtA))1/2. The norms on L2

Z and L2
W are

denoted by ‖φ‖2Z := E |φ(Z)|2 for φ ∈ L2
Z and ‖ψ‖2W := E |ψ(W )|2 for ψ ∈ L2

W . The
k × k identity matrix is denoted by Ik. For a vector V we write diag(V ) for the diagonal
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matrix with diagonal elements being the values of V . Moreover, em(Z) and fm(W ) denote
random vectors with entries ej(Z) and fj(W ), 1 6 j 6 m, respectively. For any weighting
sequence w we introduce vectors ewm(Z) and fwm(W ) with entries ewj (Z) =

√
wjej(Z) and

fwj (W ) =
√
wjfj(W ), 1 6 j 6 m. We write an ∼ bn when there exist constants c, c′ > 0

such that cbn 6 an 6 c′bn for all sufficiently large n.

2.2. The test statistic and its asymptotic distribution

Nonsingularity of the conditional expectation operator T and the smoothing operator L
implies that the null hypothesis H0 is equivalent to L(g − Tϕ0) = 0. Note that ‖L(g −
Tϕ0)‖W = 0 if and only if

∫ ∣∣L(g − Tϕ0)(w)pW (w)/ν(w)
∣∣2ν(w)dw = 0 since the Lebesgue

measure ν is strictly positive on W. Moreover, since {fj}j>1 is an orthonormal basis with
respect to ν we obtain by Parseval’s identity∫ ∣∣L(g − Tϕ0)(w)pW (w)/ν(w)

∣∣2ν(w)dw =
∞∑
j=1

E[(g − Tϕ0)(W )f τj (W )]2. (2.2)

Now we truncate the infinite sum at some integer mn which grows with the sample size n.
This ensures consistency of our testing procedure. Further, replacing the expectation by
sample mean we obtain our test statistic

Sn :=

mn∑
j=1

τj
∣∣n−1

n∑
i=1

(Yi − ϕ0(Zi))fj(Wi)
∣∣2. (2.3)

We reject the hypothesis H0 if nSn becomes too large. When no additional smoothing
is carried out, that is, L is the identity operator, then τj = 1 for all j > 1. To achieve
asymptotic normality we need to standardize our test statistic Sn by appropriate mean and
variance, which we introduce in the following definition.

Definition 2.1. For all m > 1 let Σm be the covariance matrix of the random vector
Uf τm(W ) with entries sjl = E

[
U2f τj (W )f τl (W )

]
, 1 6 j, l 6 m. Then the trace and the

Frobenius norm of Σm are respectively denoted by

µm :=
m∑
j=1

sjj and ςm :=
( m∑
j, l=1

s2jl

)1/2
.

Indeed the next result shows that nSn after standardization is asymptotically normally
distributed if mn increases appropriately as the sample size n tends to infinity.

Theorem 2.1. Let Assumptions 1–4 hold true. If mn satisfies

ς−1
mn = o(1) and

( mn∑
j=1

τj

)3
= o(n) (2.4)

then under H0

(
√

2ςmn)−1
(
nSn − µmn

) d→ N (0, 1).

Remark 2.2. Since ς2
mn 6 ηp σ

4
(∑mn

j=1 τj
)2

(cf. proof of Theorem 2.2) condition ς−1
mn = o(1)

implies that
∑mn

j=1 τj tends to infinity as n increases. Moreover, from condition (2.4) we see
that by choosing a stronger decaying sequence τ the parameter mn may be chosen larger.
From the following theorem we see that if

∑mn
j=1 τj = O(1) only m−1

n = o(1) is required. �
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In the following result, we establish the asymptotic distribution of our test when the se-
quence of weights τ may have a stronger decay than in Theorem 2.1, that is, we consider the
case where τ satisfies

∑mn
j=1 τj = O(1). This holds, for instance, if the sequence τ satisfies

τj ∼ j−(1+ε) for any ε > 0. In this case, the asymptotic distribution changes and additional
definitions have to be made. Let Σ be the covariance matrix of the infinite dimensional
centered vector

(
Uf τj (W )

)
j>1

. The ordered eigenvalues of Σ are denoted by (λj)j>1. Below,

we introduce a sequence {χ2
1j}j>1 of independent random variables that are distributed as

chi-square with one degree of freedom.

Theorem 2.2. Let Assumptions 1–4 hold true. If mn satisfies

mn∑
j=1

τj = O(1) and m−1
n = o(1) (2.5)

then under H0

nSn
d→
∞∑
j=1

λj χ
2
1j .

Remark 2.3 (Estimation of Critical Values). The asymptotic results of Theorem 2.1 and
2.2 depend on unknown population quantities. As we see in the following, the critical
values can be easily estimated. Let Wm(τ) denote a n×m matrix with entries f τj (Wi) for
1 6 i 6 n and 1 6 j 6 m. Moreover, Un = (Y1 − ϕ0(Z1), . . . , Yn − ϕ0(Zn))t. In the setting
of Theorem 2.1, we replace Σm by

Σ̂m := n−1Wm(τ)t diag(Un)2 Wm(τ).

Now the asymptotic result of Theorem 2.1 continues to hold if we replace ςmn by the
Frobenius norm of Σ̂mn and µmn by the trace of Σ̂mn . In the setting of Theorem 2.2, the
asymptotic distribution is not pivotal and has to approximated. First, the difference of
critical values between

∑∞
j=1 λjχ

2
1j and the truncated sum

∑Mn
j=1 λj χ

2
1j converges to zero

if the integer Mn > 0 tends to infinity (depending on n). Second, replace (λj)16j6Mn by

(λ̂j)16j6Mn which are the ordered eigenvalues of Σ̂Mn . Observe max16j6Mn |λ̂j − λj | =

‖Σ̂Mn − ΣMn‖ = O(Mnn
−1/2) almost surely. Hence, the critical values of

∑Mn
j=1 λ̂j χ

2
1j

converge in probability to the ones of the limiting distribution of nSn if Mn = o(
√
n). �

2.3. Limiting behavior under local alternatives.

Let us study the power of the test statistic Sn, that is, the probability to reject a false
hypothesis, against a sequence of linear local alternatives that tends to zero as n→∞. It is
shown that the power of our tests essentially relies on the choice of the weighting sequence
τ .
Let us start with the case ς−1

mn = o(1). We consider the following sequence of linear local
alternatives

Y = ϕ0(Z) + ς1/2
mn n

−1/2δ(Z) + U (2.6)

for some function δ ∈ L4
Z := {φ : E |φ(Z)|4 < ∞}. The next result establishes asymptotic

normality for the standardized test statistic Sn. Let us denote δj :=
√
τj E[δ(Z)fj(W )].
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Proposition 2.3. Given the conditions of Theorem 2.1 it holds under (2.6)

(
√

2ςmn)−1
(
nSn − µmn

) d→ N
(

2−1/2
∞∑
j=1

δ2
j , 1
)
.

As we see below the test statistic Sn has power advantages if
∑mn

j=1 τj = O(1). Let us
consider the sequence of linear local alternatives

Y = ϕ0(Z) + n−1/2δ(Z) + U (2.7)

for some function δ ∈ L4
Z . For the next result, the sequence {χ2

1j(δj/λj)}j>1 denotes
independent random variables that are distributed as non-central chi-square with one degree
of freedom and non-centrality parameters δj/λj .

Proposition 2.4. Given the conditions of Theorem 2.2 it holds under (2.7)

nSn
d→
∞∑
j=1

λj χ
2
1j(δj/λj).

Remark 2.4. We see from Proposition 2.3 that our test can detect linear alternatives at

a rate ς
1/2
mn n

−1/2. On the other hand, if
∑mn

j=1 τj = O(1) then Sn can detect local linear

alternatives at the faster rate n−1/2. But still our test with L = Id can have better power
against certain smooth classes of alternatives as illustrated by Hong and White [1995] and
Horowitz and Spokoiny [2001]. Indeed, the next subsection shows that additional smoothing
changes the class of alternatives over which uniform consistency can be obtained. �

2.4. Consistency

In this subsection, we establish consistency against a fixed alternative and uniform con-
sistency of our test over appropriate function classes. Let us first consider the case of a
fixed alternative. We assume that H0 does not hold, that is, P(ϕ = ϕ0) < 1. The follow-
ing proposition shows that our test has the ability to reject a false null hypothesis with
probability 1 as the sample size grows to infinity.
The consistency properties require the following additional assumption.

Assumption 5. (i) The function pW /ν is uniformly bounded away from zero. (ii) There
exists a constant σo > 0 such that E[U2|W ] > σ2

o .

Assumption 5 (i) implies that ‖LT (ϕ − ϕ0)‖W > 0 for any structural function ϕ in the
alternative. Further, Assumption 5 implies that

∑mn
j=1 τ

2
j = O(ς2

mn).

Proposition 2.5. Assume that H0 does not hold. Let E |Y − ϕ0(Z)|4 < ∞ and let As-
sumption 5 (i) hold true. Consider the sequence (αn)n>1 satisfying αn = o(nς−1

mn). Under
the conditions of Theorem 2.1 we have

P
(

(
√

2 ςmn)−1
(
nSn − µmn

)
> αn

)
= 1 + o(1).

Under the conditions of Theorem 2.2 we have αn = o(n) and

P
(
nSn > αn

)
= 1 + o(1).
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In the following, we specify a class of functions over which our test Sn is uniformly consistent.
This essentially implies that there are no alternative functions in this class over which our
test has low power. We show that our test is consistent uniformly over the class

Gρn =
{
ϕ ∈ L2

Z : ‖LT (ϕ− ϕ0)‖2W > ρn−1ςmn and sup
z∈Z
|(ϕ− ϕ0)(z)|2 6 C

}
where C > 0 is a finite constant. Clearly, if H0 is false then ‖LT (ϕ−ϕ0)‖2W > ρ ςmnn−1 for
all sufficiently large n and some ρ > 0. By Assumption 4 the sequence τ is nonincreasing
sequence with τ1 = 1 and hence, ‖LT (ϕ − ϕ0)‖2W 6 ‖T (ϕ − ϕ0)‖2W 6 ‖ϕ − ϕ0‖2Z by
Jensen’s inequality. We conclude that Gρn contains all alternative functions whose L2

Z-
distance to the structural function ϕ0 is at least n−1ςmn within a constant. If the coefficients
E[(ϕ − ϕ0)(Z)fj(W )] fluctuate for large j then ϕ does not belong to Gρn if the decay of τ
is too strong. On the other hand, if E[(ϕ − ϕ0)(Z)fj(W )] is sufficiently small for j up
to a finite constant then ϕ does not necessarily belong to Gρn with τ having a slow decay.
For the next result let q1α and q2α denote the 1 − α quantile of N (0, 1) and

∑∞
j=1 λj χ

2
1j ,

respectively.

Proposition 2.6. Let Assumption 5 be satisfied. For any ε > 0, any 0 < α < 1, and any
sufficiently large constant ρ > 0 we have under the conditions of Theorem 2.1 that

lim
n→∞

inf
ϕ∈Gρn

P
(

(
√

2 ςmn)−1
(
nSn − µmn

)
> q1α

)
> 1− ε,

while under the conditions of Theorem 2.2

lim
n→∞

inf
ϕ∈Gρn

P
(
nSn > q2α

)
> 1− ε.

3. A parametric specification test

In this section, we present a test whether the structural function ϕ is known up to a finite
dimensional parameter. Let Θ be a compact subspace of Rk then we consider the null
hypothesis Hp : there exists some ϑ ∈ Θ such that ϕ(·) = φ(·, ϑ) for a known function φ.
The alternative hypothesis is that there exists no ϑ ∈ Θ such that ϕ(·) = φ(·, ϑ) holds true.

3.1. The test statistic and its asymptotic distribution

Under Assumptions 3 and 4, the null hypothesis Hp is equivalent to L(g−Tφ(·, ϑ)) = 0 for
some ϑ ∈ Θ. Thereby, to verify Hp we make use of the test statistic Sn given in (2.3) where

ϕ0 is replaced by φ(·, ϑ̂n) with ϑ̂n being an estimator of ϑ. Hence, our test statistic for a
parametric specification is given by

Sp
n :=

mn∑
j=1

τj
∣∣n−1

n∑
i=1

(
Yi − φ(Zi, ϑ̂n)

)
fj(Wi)

∣∣2.
If the test statistic Sp

n becomes too large then Hp has to be rejected. To obtain asymptotic
results for the statistic Sp

n we require smoothness conditions of the function φ with respect
to its second argument. Below we denote the vector of partial derivatives of φ with respect
to ϑ = (ϑ1, . . . , ϑk)

t by φϑ = (φϑl)16l6k and the matrix of second-order partial derivatives
by φϑϑ = (φϑjϑl)16j,l6k.
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Assumption 6. (i) Let ϑ̂n be an estimator satisfying ‖ϑ̂n − ϑ0‖ = Op(n
−1/2) for some

ϑ0 ∈ int(Θ) with ϕ(·) = φ(·, ϑ0) if Hp holds true. (ii) The function φ is twice partial
differentiable with respect to its second argument. There exists some constant ηφ > 1 such
that

sup
16l6k

E |φϑl(Z, ϑ0)|4 6 ηφ and sup
16j,l6k

E sup
θ∈Θ
|φϑjϑl(Z, θ)|

4 6 ηφ.

The following proposition establishes asymptotic normality of Sp
n after standardization.

Theorem 3.1. Let Assumptions 1–4 and 6 hold true. If mn satisfies (2.4), then under Hp

(
√

2ςmn)−1
(
nSp

n − µmn
) d→ N (0, 1).

In the following theorem, we state the asymptotic distribution of nSp
n when

∑mn
j=1 τj = O(1).

In this case, we assume that ϑ̂n satisfies under Hp

√
n(ϑ̂n − ϑ0) = n−1/2

n∑
i=1

hk(Vi) + op(1) (3.1)

where Vi := (Yi, Zi,Wi, ϑ0) and hk(Vi) = (h1(Vi), . . . , hk(Vi))
t where hj , 1 6 j 6 k, are real

valued functions. It is well known that this representation holds if ϑ̂n is the generalized
method of moments estimator. Let Σp be the covariance matrix of the infinite dimensional
centered vector

(
Uf τj (W ) − E[f τj (W )φϑ(Z, ϑ0)t]hk(V )

)
j>1

. The ordered eigenvalues of Σp

are denoted by (λpj )j>1.

Theorem 3.2. Let Assumptions1–4 and 6 hold true. Assume that Hp holds true and ϑ̂n
satisfies condition (3.1) with Ehj(V ) = 0 and E |hj(V )|4 < ∞, 1 6 j 6 k. If mn satisfies
(2.5), then

nSp
n

d→
∞∑
j=1

λpj χ
2
1j .

Remark 3.1. [Estimation of Critical Values] For the estimation of critical values of Theorem

3.1 and 3.2, let us define Up
n =

(
Y1 − φ(Z1, ϑ̂n), . . . , Yn − φ(Zn, ϑ̂n)

)t
. We estimate the

covariance matrix Σm by

Σ̂m := n−1 Wm(τ)t diag(Up
n)2 Wm(τ).

Now the asymptotic result of Theorem 3.1 continues to hold if we replace ςmn by the
Frobenius norm of Σ̂mn and µmn by the trace of Σ̂mn . In the setting of Theorem 3.2,
we replace Σp by a finite dimensional matrix. Let Ak be a n × k matrix with entries
φϑl(Zi, ϑ̂n) for 1 6 i 6 n, 1 6 l 6 k and hk(V ) =

(
hk(V1), . . . , hk(Vn)

)t
. Then define

Vk := n−1hk(V )At
k. Given a sufficiently large integer M > 0 we estimate Σp by

Σ̂p
M := n−1WM (τ)t

(
diag(Up

n)−Vk

)t(
diag(Up

n)−Vk

)
WM (τ).

Hence, we approximate
∑∞

j=1 λjχ
2
1j by the finite sum

∑Mn
j=1 λ̂

p
j χ

2
1j where (λ̂pj )16j6Mn are

the ordered eigenvalues of Σ̂p
Mn

. We have max16j6Mn |λ̂
p
j − λ

p
j | = op(1) if Mn = o(

√
n). �
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3.2. Limiting behavior under local alternatives and consistency.

In the following, we study the power and consistency properties of the test statistic Sp
n.

In the following, we consider a sequence of linear local alternatives (2.6) or (2.7) with
ϕ0 = φ(ϑ0, ·). Further, let δ⊥ denote the projection of δ onto the orthogonal complement
of φ(·, ϑ0); that is, E[φϑ(Z, ϑ0)δ⊥(Z)] = 0. Let us denote δj⊥ :=

√
τj E[δ⊥(Z)fj(W )].

Proposition 3.3. Let the conditions of Theorem 3.1 be satisfied. Then under (2.6) with
ϕ0 = φ(·, ϑ0) it holds

(
√

2ςmn)−1
(
nSp

n − µmn
) d→ N

(
2−1/2

∞∑
j=1

δ2
j⊥, 1

)
.

Let the conditions of Theorem 3.2 be satisfied. Then under (2.7) with ϕ0 = φ(·, ϑ0) it holds

nSp
n

d→
∞∑
j=1

λpj χ
2
1j(δj⊥/λ

p
j ).

Remark 3.2. Under homoscedasticity, that is, E[U2|W ] = σ2
o , W ∼ U [0, 1], and L = Id we

see from Proposition 3.3 that our test has the same power properties as the test of Hong
and White [1995]. On the other hand, if

∑mn
j=1 τj = O(1) then our test can detect local

linear alternatives at a rate n−1/2 as in Horowitz [2006], which decreases more quickly than
the rate obtained by Tripathi and Kitamura [2003]. �

The next proposition establishes consistency of our test against a fixed alternative model.
It is assumed that Hp is false, that is, there exists no ϑ ∈ Θ such that ϕ(·) = φ(·, ϑ). In

this situation, ϑ0 denotes the probability limit of the estimator ϑ̂n.

Proposition 3.4. Assume that Hp does not hold. Let E |Y −φ(Z, ϑ0)|4 <∞ and Assump-
tion 5 (i) hold true. Let (αn)n>1 as in Proposition 2.5. Under the conditions of Theorem
3.1 we have

P
(

(
√

2 ςmn)−1
(
nSp

n − µmn
)
> αn

)
= 1 + o(1).

Given the conditions of Theorem 3.2 it holds

P
(
nSp

n > αn
)

= 1 + o(1).

In the following, we show that Sp
n is consistent uniformly over the function class

Hρn =
{
ϕ ∈ L2

Z : ‖LT (ϕ− φ(·, ϑ0))‖2W > ρn−1ςmn and sup
z∈Z
|ϕ(z)− φ(z, ϑ0)| 6 C

}
for some constant C > 0 and ϑ0 denotes the probability limit of ϑ̂n. Similarly as in the
previous section, it can be seen that Hρn only contains functions whose L2

Z distance to
φ(·, ϑ0) is at least n−1ςmn within a constant. For the next result let q1α and q2α denote the
1− α quantile of N (0, 1) and

∑∞
j=1 λ

p
j χ

2
1j , respectively.

Proposition 3.5. Let Assumption 5 be satisfied. For any ε > 0, any 0 < α < 1, and any
sufficiently large constant ρ > 0 we have under the conditions of Theorem 3.1 that

lim
n→∞

inf
ϕ∈Hρn

P
(

(
√

2 ςmn)−1
(
nSp

n − µmn
)
> q1α

)
> 1− ε,

whereas under the conditions of Theorem 3.2 it holds

lim
n→∞

inf
ϕ∈Hρn

P
(
nSp

n > q2α

)
> 1− ε.
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4. A nonparametric test of exogeneity

Endogeneity of regressors is a common problem in econometric applications. Falsely as-
suming exogeneity of the regressors leads to inconsistent estimators. On the other hand,
treating exogenous regressors as if they were endogenous can lower the accuracy of esti-
mation dramatically. In this section, we propose a test whether the vector of regressors
Z is exogenous, that is, E[U |Z] = 0 or equivalently ϕ(Z) = E[Y |Z]. In this section, let
ϕ0(Z) = E[Y |Z] then the hypothesis under consideration is given by He : ϕ = ϕ0. The
alternative hypothesis is that ϕ 6= ϕ0.

4.1. The test statistic and its asymptotic distribution

To establish a test of exogeneity, let us first introduce an estimator of the conditional mean
of Y given Z. This estimator is based on a sequence of approximating functions {ej}j>1

belonging to L2
Z . Further, let Zk denote a n × k matrix with entries ej(Zi) for 1 6 i 6 n

and 1 6 j 6 k. Moreover, let Yn = (Y1, . . . , Yn)t. Then we define the estimator

ϕk(·) := ek(·)tβ̂k where β̂k = (ZtkZk)
− ZtkYn. (4.1)

In contrast to the parametric case we need to allow for k tending to infinity as n → ∞ in
order to ensure consistency of the estimator ϕk. Under conditions given below ZtknZkn will
be nonsingular with probability approaching one and hence its generalized inverse will be
the standard inverse. Note that the asymptotic behavior of the estimator ϕk was studied,
for example, by Newey [1997].
Under Assumptions 3 and 4, the null hypothesis He is equivalent to L(g − Tϕ0) = 0. Con-
sequently, our test of exogeneity of Z is based on the goodness-of-fit statistic Sn introduced
in (2.3) but where ϕ0 is replaced by the series estimator ϕkn . The proposed test statistic
for He is now given by

Se
n =

mn∑
j=1

τj
∣∣n−1

n∑
i=1

(
Yi − ϕkn(Zi)

)
fj(Wi)

∣∣2
where kn and mn tend to infinity as n → ∞. The hypothesis of exogeneity of Z has to be
rejected if Se

n becomes too large.
For controlling the bias of the estimator ϕkn we specify in the following a rate of approxi-
mation (cf. Newey [1997]). Let γ = (γj)j>1 be a nondecreasing sequence with γ1 = 1. We
assume that ϕ0 belongs to

Fγ :=
{
φ ∈ L2

Z : sup
z∈Z
|φ(z)− ekn(z)tβkn |2 = O(γ−1

kn
) for some βkn ∈ Rkn

}
.

Here, the sequence of weights γ measures the approximation error of ϕ0 with respect to the
functions {ej}j>1.

Assumption 7. (i) Let ϕ0 ∈ Fγ with nondecreasing sequence γ satisfying j2 = o(γj). (ii)
There exists some constant ηe > 1 such that supz∈Z ‖ekn(z)‖2 6 ηekn. (iii) The smallest

eigenvalue of E[ek(Z)ek(Z)t] is bounded away from zero uniformly in k. (iv) E[U2|Z] is
bounded.

Assumption 7 (i) determines the required asymptotic behavior of the rate γ. For splines
and power series this assumption is satisfied if the number of continuous derivatives of ϕ0
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divided by the dimension of Z equals two. Assumption 7 (ii) and (iii) restrict the magnitude
of the approximating functions {ej}j>1 and impose nonsingularity of their second moment
matrix.
We are now in the position to proof the following asymptotic result for the standardized test
statistic Se

n. Here, a key requirement is that kn = o(ςmn) implying that kn = o(
∑mn

j=1 τj)
and, in particular, kn = o(mn) if the smoothing operator L is the identity.

Theorem 4.1. Let Assumptions 1–4 and 7 be satisfied. If

n = o(γknςmn), kn = o(ςmn), and
( mn∑
j=1

τj

)3
= o(n) (4.2)

then under He it holds

(
√

2ςmn)−1
(
nSe

n − µmn
) d→ N (0, 1).

Example 4.1. Let Z be continuously distributed with dim(Z) = r and set L = Id. Consider
the polynomial case where γj ∼ j2p/r with p > 1 and let mn ∼ nν with 0 < ν < 1/3. Let
Assumption 5 hold true then

√
mn = O(ςmn). Hence, condition (4.2) is satisfied if kn ∼ nκ

with

r(1− ν/2)/(2p) < κ < ν/2. (4.3)

This ensures that the bias of this estimator in the statistic Se
n is asymptotically negligible.

Note that condition (4.3) requires 2p > r (2/ν − 1). Hence, with a larger dimension r also
the smoothness of ϕ0 has to increase, reflecting the curse of dimensionality. �

The next result states an asymptotic distribution result for the statistic Se
n if

∑mn
j=1 τj =

O(1). LetΣe be the covariance matrix of the infinite dimensional centered vector
(
U(f τj (W )−∑

l>1 E[f τj (W )el(Z)]el(Z))
)
j>1

. The ordered eigenvalues of Σe are denoted by (λej)j>1.

Theorem 4.2. Let Assumptions 1–4 and 7 be satisfied. If

mn∑
j=1

τj = O(1), n = O(γkn), k3
n = o(n), and m−1

n = o(1) (4.4)

then under He it holds

nSe
n

d→
∞∑
j=1

λej χ
2
1j .

Example 4.2. Consider the setting of Example 4.1 but where the eigenvalues of L satisfy
τj ∼ j−2. Condition (4.4) is satisfied if mn ∼ nν for some ν > 0 and kn ∼ nκ with
r/(2p) < κ < 1/3. Here, the required smoothness of ϕ0 is p > 3r/2. In contrast to the
setting of Theorem 4.1, the estimator of ϕ0 needs to be undersmoothed. This ensures that
the bias of this estimator in the statistic Se

n is asymptotically negligible. �

Remark 4.1. In contrast to Blundell and Horowitz [2007] no smoothness assumptions on
the joint distribution of (Z,W ) is required here. In addition, we do not need any assumption
that links the smoothness of the regression function ϕ0 to the smoothness of the joint density
of (Z,W ). �
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Remark 4.2 (Estimation of Critical Values). For the estimation of critical values of The-

orem 4.1 and 4.2, let us define Ue
n =

(
Y1−ϕkn(Z1), . . . , Yn−ϕkn(Zn)

)t
. For any m > 1 we

estimate the covariance matrix Σm by

Σ̂m := n−1 Wm(τ)t diag(Ue
n)2 Wm(τ).

Now the asymptotic result of Theorem 4.1 continues to hold if we replace ςmn by the
Frobenius norm of Σ̂mn and µmn by the trace of Σ̂mn . This consistency is shown in Lemma
4.3. In the setting of Theorem 4.2, we replace Σe by a finite dimensional matrix

Σ̂e
M := n−1WM (τ)t

(
In − n−1ZknZ

t
kn

)
diag(Ue

n)2
(
In − n−1ZknZ

t
kn

)
WM (τ)

where M > 0 is a sufficiently large integer. Let (λ̂ej)16j6Mn denote the ordered eigen-

values of Σ̂e
Mn

. Hence, we approximate
∑∞

j=1 λ
e
jχ

2
1j by the finite sum

∑Mn
j=1 λ̂

e
j χ

2
1j where

max16j6Mn |λ̂ej − λej | = op(1) if Mn = o(
√
n). �

Lemma 4.3. Consider Σ̂mn as defined in Remark 4.2. Under conditions of Theorem 4.1 or
Theorem 4.2 the difference of its Frobenius norm to ςmn and its trace to µmn converge in
probability to zero.

4.2. Limiting behavior under local alternatives and consistency.

Similar to the previous sections we study the power and consistency properties of our test.
Let us study the power of our test of exogeneity under linear local alternatives (2.6) or

(2.7). In these cases, it holds E[U |W ] = 0 but E[U |Z] = −ς1/2
mn n

−1/2δ(Z) under (2.6) or
E[U |Z] = −n−1/2δ(Z) under (2.7).

Proposition 4.4. Given the conditions of Theorem 4.1 and Assumption 5 (ii) it holds
under (2.6)

(
√

2ςmn)−1
(
nSe

n − µmn
) d→ N

(
2−1/2

∞∑
j=1

δ2
j , 1
)
.

Given the conditions of Theorem 4.2 it holds under (2.7)

nSe
n

d→
∞∑
j=1

λej χ
2
1j(δj/λ

e
j).

Let us now establish consistency of our tests when He does not hold, that is, P
(
ϕ = ϕ0

)
< 1.

Proposition 4.5. Assume that He does not hold. Let E |Y −ϕ0(Z)|4 <∞ and Assumption
5 (i) hold true. Let (αn)n>1 as in Proposition 2.5. Under the conditions of Theorem 4.1 we
have

P
(

(
√

2 ςmn)−1
(
nSe

n − µmn
)
> αn

)
= 1 + o(1),

whereas in the setting of Theorem 4.2

P
(
nSe

n > αn
)

= 1 + o(1).
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In the following we show that our tests are consistent uniformly over the function class

Iρn =
{
ϕ ∈ L2

Z : ‖LT (ϕ− ϕ0)‖2W > ρn−1ςmn and sup
z∈Z
|(ϕ− ϕ0)(z)| 6 C

}
form some constant C > 0. For the next result let q1α and q2α denote the 1− α quantile of
N (0, 1) and

∑∞
j=1 λ

e
j χ

2
1j , respectively.

Proposition 4.6. Let Assumption 5 be satisfied. Under the conditions of Theorem 4.1 we
have for any ε > 0, any 0 < α < 1, and any sufficiently large constant ρ > 0 that

lim
n→∞

inf
ϕ∈Iρn

P
(

(
√

2 ςmn)−1
(
nSe

n − µmn
)
> q1α

)
> 1− ε,

whereas under the conditions of Theorem 4.2 it holds

lim
n→∞

inf
ϕ∈Iρn

P
(
nSe

n > q2α

)
> 1− ε.

5. A nonparametric specification test

A solution to the linear operator equation (2.1) only exists if g belongs to the range of T .
This might be violated if, for instance, the instrument is not valid, that is, E[U |W ] 6= 0. In
many economic applications a priori smoothness restriction on the unknown function can
be justified which we capture by a set of functions F . We consider the hypothesis Hnp:
there exists a solution ϕ0 ∈ F to (2.1). The alternative hypothesis is that there exists a
solution (2.1) which does not belong to F . Under the alternative only unsmooth functions
solve the conditional moment restriction which can be interpreted as a failure of validity of
the instrument W . We see in this section that our results allow also for a test of dimension
reduction of the vector of regressors Z, that is, whether some regressors can be omitted
from the structural function ϕ0.

5.1. Nonparametric estimation method

The nonparametric estimator. In the following, we derive an estimator of ϕ0 under the
null hypothesis Hnp. For simplicity, assume that Z =W and consider a sequence {ej}j>1 of
approximating functions which are orthonormal on Z with respect to the Lebesque measure
ν. Under conditions given below, ϕ0 has the expansion ϕ0(·) =

∑∞
l=1

∫
ϕ0(z)el(z)ν(z)dz el(·).

Thereby, the conditional moment restriction under Hnp leads to the following unconditional
moment restrictions

E[Y ej(W )] =
∞∑
l=1

E[ej(W )el(Z)]

∫
ϕ0(z)el(z)ν(z)dz (5.1)

for j > 1. This motivates the following orthogonal series type estimator. Let Zk and Yn be
as in the previous section and let Xk denote a n×k matrix with entries ej(Wi) for 1 6 i 6 n
and 1 6 j 6 k. Then for each k > 1 we consider the estimator

ϕ̂k(·) := ek(·)tβ̂k where β̂k = (Xt
kZk)

−Xt
kYn. (5.2)

Under conditions given below Xt
kn
Zkn will be nonsingular with probability approaching

one and hence its generalized inverse will be the standard inverse. The nonparametric
estimator ϕ̂k given in (5.2) was studied by Johannes and Schwarz [2010], Horowitz [2011],
and Horowitz [2012].
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Additional assumptions. In the following, we specify a priori smoothness assumptions
captured by the set F . As noted by Horowitz [2012], uniformly consistent testing of Hnp

is only possible if the null is restricted that any solution to (2.1) is smooth. Here, we as-
sume that under the null hypothesis ϕ0 belongs to the ellipsoid F := Fργ :=

{
φ ∈ L2

Z :∑∞
j=1 γj E[φ(Z)ej(Z)]2 6 ρ

}
. As in the previous section, γ = (γj)j>1 measures the approx-

imation error of ϕ0 with respect to the basis {ej}j>1.
Further, as usual in the context of nonparametric instrumental regression, we specify some
mapping properties of the conditional expectation operator T . Denote by T the set of all
nonsingular operators mapping L2

Z to L2
W . Given a sequence of weights υ := (υj)j>1 and

d > 1 we define the subset T υd of T by

T υd :=
{
T ∈ T :

∫
|(Tφ)(w)|2ν(w)dw 6 d

∞∑
j=1

υj

(∫
φ(z)ej(z)ν(z)dz

)2
for all φ ∈ L2

Z

}
.

If pZ/ν is bounded from above and pW /ν is uniformly bounded away from zero then the
conditional expectation operator T belongs to T υd with υj = 1, j > 1, due to Jensen’s
inequality. Notice that for all T ∈ T υd it follows that ‖Tej‖2W 6 d ηpυj and thereby, the
condition T ∈ T υd links the operator T to the basis {ej}j>1. In the following, we denote
[T ]k = E[ek(W )ek(Z)t] which is assumed to be a nonsingular matrix. In what follows, we
introduce a stronger condition on the basis {el}l>1. We denote by T υd,D for some D > d the
subset of T υd given by

T υd,D :=
{
T ∈ T υd : [T ]k is nonsingular and sup

k>1
‖diag(υ1, . . . , υk)

1/2[T ]−1
k ‖

2 6 D
}
.

The class T υd,D only contains operators T whose off-diagonal elements of [T ]−1
k are sufficiently

small for all k > 1. A similar diagonality restriction has been used by Hall and Horowitz
[2005] or Breunig and Johannes [2011]. Besides the mapping properties for the operator T
we need a stronger assumption for the basis under consideration. The following condition
gathers conditions on the sequences γ and υ.

Assumption 8. (i) Under Hnp, let ϕ0 ∈ Fργ with nondecreasing sequence γ satisfying j3 =
o(γj). (ii) The sequence {ej}j>1 is an orthogonal basis on Z = W with respect to ν. (iii)
There exists some constant ηe > 1 such that supj>1 supz∈Z |ej(z)| 6 ηe. (iv) Let T ∈ T υd,D
with υ being a strictly positive sequences such that υ and (υj/τj)j>1 are nonincreasing. (v)
pZ/ν is bounded from above and pW /ν is uniformly bounded away from zero.

Due to Assumption 8 (iv) the degree of additional smoothing for our testing procedure
must not be stronger than the degree of ill-posedness implied by the conditional expectation
operator T . Under similar assumptions as above, Johannes and Schwarz [2010] show that
mean integrated squared error loss of ϕ̂kn attains the optimal rate of convergence Rn :=
max

(
γ−1
kn
,
∑kn

j=1(nυj)
−1
)
. Due to Assumption 8 (v) we do not require orthonormal bases

with respect to the unknown distribution (Z,W ) (cf. Remark 3.2 of Breunig and Johannes
[2011]).

5.2. The test statistic and its asymptotic distribution

As in the previous sections, our test is based on the observation that the null hypothesis
Hnp is equivalent to L(g−Tϕ0) = 0. Our goodness-of-fit statistic for testing nonparametric
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specifications is given by Sn where ϕ0 is replaced by the nonparametric estimator ϕ̂kn given
in (5.2), that is,

Snp
n :=

mn∑
j=1

τj
∣∣n−1

n∑
i=1

(
Yi − ϕ̂kn(Zi)

)
fj(Wi)

∣∣2.
If Snp

n becomes too large then there exists no function in Fργ solving (2.1). The next result
establishes asymptotic normality of Snp

n after standardization. Again, a key requirement
to obtain this asymptotic distribution is that kn = o(ςmn) implying that kn = o(mn) if
the smoothing operator L is the identity. This corresponds to the test of overidentification
in the parametric framework where more orthogonality restrictions than parameters are
required.

Theorem 5.1. Let Assumptions 1–4 and 8 be satisfied. If

nυkn = o(γknςmn), kn = o(ςmn), kn

( mn∑
j=1

τj

)2
= O(nυkn), and

( mn∑
j=1

τj

)3
= o(n) (5.3)

then it holds under Hnp

(
√

2ςmn)−1
(
nSnp

n − µmn
)

d→ N (0, 1).

Example 5.1. Consider the setting of Example 4.1. In the mildly ill posed case where
υj ∼ j−2a/r for some a > 0 condition (5.3) holds true if kn ∼ nκ with κ < ν/2 and

r(1− ν/2)/(2a+ 2p) < κ < r(1− 2ν)/(2a+ r).

In the severely ill posed case, that is, υj ∼ exp(−j2a/r) for some a > 0, condition (5.3) is
satisfied if, for example, mn satisfies mn = o(kpn) and kn = o(

√
mn) where kn ∼

(
log n −

log(m
3/2
n )

)r/(2a)
. �

The next result states an asymptotic distribution of our test if
∑mn

j=1 τj = O(1). Let Σnp be

the covariance matrix of the infinite dimensional centered vector
(
U(f τj (W )− eτj (W ))

)
j>1

.

The ordered eigenvalues of Σnp are denoted by (λnpj )j>1.

Theorem 5.2. Let Assumptions 1–4 and 8 be satisfied. If

mn∑
j=1

τj = O(1), nυkn = o(γkn), k3
n = o(nυkn), and m−1

n = o(1) (5.4)

then it holds under Hnp

nSnp
n

d→
∞∑
j=1

λnpj χ2
1j .

Example 5.2. Consider the setting of Example 4.2. In the mildly ill posed case, that is,
υj ∼ j−2a/r for some a > 0, condition (5.4) is satisfied if mn ∼ nν for some ν > 0 and
kn ∼ nκ with

r/(2a+ 2p) < κ < r/(2a+ 3r).

In the severely ill posed case, that is, υj ∼ exp(−j2a/r) for some a > 0, condition (5.4) is

satisfied if kn ∼
(

log(n1+ε)
)r/(2a)

for any ε > 0. In contrast to Theorem 5.1, we require
undersmoothing of the estimator ϕ̂kn . �
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Remark 5.1. If the basis {ej}j>1 coincides with {fj}j>1 then nSnp
n is asymptotically de-

generate. To avoid this degeneracy problem we choose different bases functions and hence,
sample splitting as used by Horowitz [2012] is not necessary here. �

Remark 5.2. Let Z ′ be a vector containing only entries of Z with dim(Z ′) < dim(Z). It
is easy to generalize our previous result for a test of H ′np: there exists a solution ϕ0 ∈ Fργ
to (2.1) only depending on Z ′. To be more precise consider the test statistic

S
′np
n :=

∥∥n−1
n∑
i=1

(
Yi − ϕ̂kn(Z ′i)

)
f τmn(Wi)‖2

where ϕ̂kn is the estimator (5.2) based on an iid. sample (Y1, Z
′
1,W1), . . . , (Yn, Z

′
n,Wn) of

(Y,Z ′,W ). Under H ′np we consider the conditional expectation operator T ′ : L2
Z′ → L2

W

with T ′φ := E[φ(Z ′)|W ]. It is interesting to note that if T is nonsingular then also T ′ is.
Hence, for a test of H ′np we may replace Assumption 3 by the weaker condition that T ′ is
nonsingular. Moreover, under H ′np the results of Theorem 5.1 and 5.2 still hold true if we
replace Z by Z ′. �

In the mildly ill-posed case, the estimation precision suffers from the curse of dimensionality.
Hence, by the test of dimension reduction of Z we can increase the accuracy of estimation of
ϕ0. On the other hand, in the severely ill-posed case the rate of convergence is independent
of the dimension of Z (cf. Chen and Reiß [2011]). As the next example illustrates, a
dimension reduction test can also weaken the required restrictions on the instrument to
obtain identification of ϕ in the restricted model.

Example 5.3. Let Z = (Z(1), Z(2)) where both, Z(1) and Z(2) are endogenous vectors of
regressors. But only Z(1) satisfies a sufficiently strong relationship with the instrument W in
the sense that for all φ ∈ L2

Z(1) condition E[φ(Z(1))|W ] = 0 implies φ = 0. In this example,
we do not assume that this completeness condition is fulfilled for the joint distribution of
(Z(2),W ). Thereby only the operator T (1) : L2

Z(1) → L2
W with T (1)φ := E[φ(Z(1))|W ] is

nonsingular but T is singular. If our dimension reduction test of Z indicates that Z(2) can
be omitted from the structural function ϕ0 then we obtain identification in the restricted
model. �

Remark 5.3. [Estimation of Critical Values] For the estimation of critical values of Theorem

5.1 and 5.2, let us define Unp
n =

(
Y1 − ϕ̂kn(Z1), . . . , Yn − ϕ̂kn(Zn)

)t
. For all m > 1, we

estimate the covariance matrix Σm by

Σ̂m := n−1 Wm(τ)tdiag(Unp
n )2 Wm(τ).

Now the asymptotic result of Theorem 5.1 continues to hold if we replace ςmn by the
Frobenius norm of Σ̂mn and µmn by the trace of Σ̂mn (this is easily seen from the proof of
Lemma 4.3 assuming that {fj}j>1 is uniformly bounded). In the setting of Theorem 5.2, we
replace Σnp by a finite dimensional matrix. Let Vk := Wk

(
ZtkWk)

−1Ztk for k > 1. Then
for a sufficiently large integer M > 0 we estimate Σnp by

Σ̂np
M := n−1WM (τ)

(
In −Vkn

)t
diag(Unp

n )2
(
In −Vkn

)
WM (τ).

Hence, we approximate
∑∞

j=1 λ
np
j χ

2
1j by the finite sum

∑Mn
j=1 λ̂

np
j χ2

1j where (λ̂npj )16j6Mn are

the ordered eigenvalues of Σ̂np
Mn

where max16j6Mn |λ̂
np
j − λ

np
j | = op(1) if Mn = o(

√
n). �
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5.3. Limiting behavior under local alternatives and consistency.

Similar to the previous sections we study the power and consistency properties of our test.
To study the power against local alternatives of the statistic Snp

n we consider alternative
models with the function ϕkn(·) = ekn(·)t[T ]−1

kn
E[Y fkn(W )]. We consider alternative models

Y = ϕkn(Z) + ς1/2
mn n

−1/2δ(Z) + U (5.5)

for some function δ ∈ L4
Z and where E[U |W ] = 0. Let ϕ be such that E[Y − ϕ(Z)|W ] = 0.

Due to (5.5) ϕ does not belong Fργ and hence Hnp fails. Indeed, if ϕ ∈ Fργ then we show
in the appendix that ‖T (ϕ− ϕkn)‖2W = O(υknγ

−1
kn

) = o(ςmnn
−1) due to condition (5.3) (or

(5.4)), which is in contrast to (5.5).

Proposition 5.3. Let Assumption 5 (ii) be satisfied. Given the conditions of Theorem 5.1
it holds under (5.5)

(
√

2ςmn)−1
(
nSnp

n − µmn
) d→ N

(
2−1/2

∞∑
j=1

ξ2
j , 1
)
.

Given the conditions of Theorem 5.2 it holds under (5.5) where ςmn is replaced by 1 that

nSnp
n

d→
∞∑
j=1

λnpj χ2
1j(δj/λ

np
j ).

In the next proposition, we establish consistency of our test when Hnp does not hold, that
is, the solution to (2.1) does not belong to Fργ for any sequence γ satisfying Assumption 8
and any sufficiently large constant 0 < ρ <∞.

Proposition 5.4. Assume that Hnp does not hold. Let Assumption 5 (i) hold true. Let
(αn)n>1 be as in Proposition 2.5. Under the conditions of Theorem 5.1 and 5.2, respectively,
we have

P
(

(
√

2 ςmn)−1
(
nSnp

n − µmn
)
> αn

)
= 1 + o(1),

P
(
nSnp

n > αn
)

= 1 + o(1).

In the following we show that our tests are consistent uniformly over the function class

J ρn =
{
ϕ ∈ L2

Z : ‖LT (ϕ− ϕ0)‖2W > ρn−1ςmn and sup
z∈Z
|(ϕ− ϕ0)(z)| 6 C

}
where ϕ0 ∈ Fργ solves (2.1) and C > 0 is a finite constant. For the next result let q1α and
q2α denote the 1− α quantile of N (0, 1) and

∑∞
j=1 λ

np
j χ2

1j , respectively.

Proposition 5.5. Let Assumption 5 be satisfied. For any ε > 0, any 0 < α < 1, and any
sufficiently large constant ρ > 0 we have under the conditions of Theorem 5.1

lim
n→∞

inf
ϕ∈J ρn

P
(

(
√

2 ςmn)−1
(
nSnp

n − µmn
)
> q1α

)
> 1− ε,

whereas under the conditions of Theorem 5.2 it holds

lim
n→∞

inf
ϕ∈J ρn

P
(
nSnp

n > q2α

)
> 1− ε.

18



6. Monte Carlo simulation

In this section, we study the finite-sample performance of our test by presenting the results
of Monte Carlo experiments. There are 1000 Monte Carlo replications in each experiment.
Results are presented for the nominal level 0.05. Realizations of Y were generated from

Y = ϕ(Z) + cUU (6.1)

for some constant cU > 0 specified below. The structural function ϕ and the joint distribu-
tion of (Z,W,U) varies in the experiments below. As basis {fj}j>1 we choose cosine basis
functions given by fj(t) =

√
2 cos(πjt) for j = 1, 2, . . . throughout this simulation study.

Parametric Specification Let us investigate the finite sample performance of our tests in
the case of parametric specifications. Realizations (Z,W ) were generated by W ∼ U [0, 1],
Z = (ξ W +(1−ξ) ε)2 where ξ = 0.8 and ε ∼ N (0.5, 0.1). Moreover, let U = κ ε+

√
1− κ2 ε

with κ = 0.3 and ε ∼ N(0, 1). Then realizations of Y where generated by (6.1) with cU = 0.2
by an either linear function

ϕ(z) = z, (6.2)

a polynomial of second degree

ϕ(z) = z − z2, (6.3)

or a polynomial of third degree

ϕ(z) = z − z2 + θ3 z
3. (6.4)

Given (6.4) is the correct model, then θ3 = 1.5 if (6.2) is the null model and θ3 = 3 if (6.2)
is the null model. In Table 1 we depict the empirical rejection probabilities when using
Sp
n with additional smoothing where either τj = j−1 or τj = j−2, j > 1, which we denote

by S1p
n or S2p

n , respectively. When τj = j−1 then the number of basis functions used is

Sample Null Alt. Empirical Rejection probability

Size Model Model S1p
n S2p

n H(2006)’ test

250 (6.2) Hp true 0.047 0.045 0.063

(6.3) Hp true 0.049 0.050 0.059

(6.2) (6.3) 0.902 0.930 0.888

(6.2) (6.4) 0.730 0.732 0.653

(6.3) (6.4) 0.442 0.488 0.468

500 (6.2) Hp true 0.055 0.044 0.053

(6.3) Hp true 0.051 0.053 0.059

(6.2) (6.3) 0.989 0.998 0.988

(6.2) (6.4) 0.899 0.894 0.780

(6.3) (6.4) 0.709 0.728 0.652

Table 1: Empirical Rejection probabilities for parametric specification
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m = 200 while in the case of τj = j−2 a choice of m = 100 is sufficient. The critical values
are estimated as described in Remark 3.1 where M = 150 if τj = j−1 and M = 100 if

τj = j−2. This choice of M ensures that the estimated eigenvalues λ̂j are sufficiently close
to zero for all j > M . We compare our test statistic with the test of Horowitz [2006]. We
follow his implementation using biweight kernels. The bandwidth used to estimate the joint
density of (Z,W ) was also selected by cross validation. As Table 1 illustrates, the results
for S1p

n and S2p
n are quite similar. In both situations, our test is more powerful than the test

of Horowitz [2006] when testing (6.2) against (6.4). In this simulation study, we observed
that the estimated coefficients of T (ϕ− φ(ϑ0, ·)) have a fast decay. Consequently, the test
statistic Sn with no weighting has less power, as we discussed in Subsection 2.4. In contrast,
we will demonstrate by the end of this section that using weights can be inappropriate.

Testing Exogeneity We now turn to the test of exogeneity where the realizations (Z,W )
are generated by W ∼ U [0, 1] and Z = ξ W+

√
1− ξ2 ε with ξ = 0.7, and ε ∼ U [0, 1]. More-

over, let U = κ ε+
√

1− κ2 ε with ε ∼ U [0, 1]. Here, κ measures the degree of endogeneity
of Z and is varied among the experiments. The null hypothesis H0 holds true if κ = 0 and
is false otherwise. Now realizations of Y where generated by (6.1) with cU = 1 and the
nonparametric structural function ϕ1(z) =

∑∞
j=1(−1)j+1 j−1 sin(jπz). For computational

reasons we truncate the infinite sum at K = 100. The resulting function is displayed in
Figure 6. We estimate the structural relationship using Lagrange polynomials. Indeed,
only a few basis functions are necessary to accurately approximate the true function. If we
choose kn too small or too large then the estimator will be a poor approximate of the true
structural function and hence, the test statistic will reject Hnp. In this experiment we set
kn = 4 for n = 250 and n = 500.

Sample Size κ Empirical Rejection probability using

S1e
n S2e

n BH(2007)’ test

250 0.0 0.038 0.030 0.030

0.15 0.209 0.314 0.153

0.2 0.369 0.513 0.293

0.25 0.591 0.716 0.504

500 0.0 0.043 0.043 0.052

0.15 0.476 0.543 0.416

0.2 0.749 0.809 0.693

0.25 0.922 0.957 0.885

Table 2: Empirical Rejection probabilities for testing exogeneity

In Table 2 we depict the empirical rejection probabilities when using Se
n with additional

smoothing where either τj = j−1 or τj = j−2, j > 1, which we denote by S1e
n or S2e

n ,
respectively. The critical values of these statistics are estimated as described in Remark
4.2 with M = 50 in case of τj = j−1 and M = 40 in case of τj = j−2. We compare our
results with the test of Blundell and Horowitz [2007]. We follow their approach by choosing
the bandwidth of the joint density of (Z,W ) by cross validation. The bandwidth of the
marginal of Z is n1/5−7/24 times the cross-validation bandwidth. As we see from Table 2,
S1e
n is slightly more powerful than the test of Blundell and Horowitz [2007]. If we choose a
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stronger sequence, however, then our test statistic S2e
n becomes considerably more powerful.

Nonparametric Specification Let us now study the finite sample of our test in the case
of nonparametric specification. We generate the pair (Z,W ) as in the parametric case
described above. For the generation of the dependent variable Y we distinguish two cases.
Besides the structural function ϕ1(z) =

∑∞
j=1(−1)j+1j−2 sin(jπz) we also consider the

function ϕ2(z) =
∑∞

j=1((−1)j+1 + 1)/4 j−2 sin(jπz). Again, for computational reasons we
truncate the infinite sum at K = 100. The resulting functions are displayed in Figure 6.
Further, Y is generated by (6.1) either with ϕ1 and cU = 0.2 or ϕ2 and cU = 0.8. In both
cases, we estimate the structural relationship using Lagrange polynomials with kn = 4 for
n = 500 and n = 1000.
If Hnp is false then E[U |W ] 6= 0 and we let E[U |W ] = E[ρ(Z)|W ] where ρ is defined below.
Consequently, when Hnp is false we generate realizations of Y from

Y = ϕl(Z) + ρj(Z) + cUU

for l = 1, 2 and j > 1 where ρj(z) = cj(exp(2jz)1{z61/2}+ exp(2j(1− z))1{z>1/2}−1) and

cj is a normalizing constant such that
∫ 1

0 ρj(z)dz = 0.5. The functions ρj are continuous
but not differentiable at 0.5. Roughly speaking, the degree of roughness of ρj is larger for
larger j. In Table 3, we depict the empirical rejection probabilities when using Snp

n with
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Figure 1: Graph of ϕ1 and ϕ2

either no smoothing or additional smoothing τj = j−2, j > 1, which we denote by S0np
n

or S2np
n , respectively. When no additional smoothing is applied then the number of basis

functions fj is given by mn = 11 if n = 500 and mn = 15 if n = 1000 and hence, the choice
of mn is slightly larger than n1/3 as suggested by the theoretical results. The critical values
of these statistics are estimated as described in Remark 5.3 where in the case of S2np

n we
choose M = 100. We compare our results with the test of Horowitz [2012]. We observe
that the statistic S0np

n is less powerful than S2np
n against the alternatives ρ1 and ρ2.

In the following, we illustrate that using additional weighting can be inappropriate. Table 4
illustrates the power of our tests when the structural function ϕ2 is considered and realiza-
tions (Z,W ) were generated by W ∼ U [0, 1], Z = (0.8W + 0.3 ε)2 where ε ∼ N (0.5, 0.05).
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Sample Size ρ Empirical Rejection probability using

S0np
n S2np

n H(2012)’ test

500 Hnp true 0.034 0.039 0.040

ρ1 0.099 0.382 0.258

ρ2 0.309 0.765 0.536

ρ4 0.498 0.884 0.712

1000 Hnp true 0.058 0.058 0.046

ρ1 0.405 0.672 0.427

ρ2 0.768 0.899 0.704

ρ4 0.920 0.943 0.808

Table 3: Empirical Rejection prob. for Nonparametric Specification for ϕ1 with cU = 0.2

In this case, we generate Y using (6.1) where cU = 0.8. In this case, the estimates of the
generalized coefficients of T (ϕ − ϕ0) are more fluctuating and using weights is not appro-
priate here. Indeed, as we can see from Table 4, the test statistic S0np

n with no smoothing
is more powerful than S2np

n were weighting τj = j−2, j > 1, is used. In particular, S0np
n is

much more powerful than the test of Horowitz [2012].

Sample Size ρ Empirical Rejection probability using

S0np
n S2np

n H(2012)’ test

500 Hnp true 0.022 0.044 0.044

ρ3 0.230 0.193 0.158

ρ4 0.400 0.319 0.245

ρ5 0.543 0.463 0.370

1000 Hnp true 0.044 0.049 0.052

ρ3 0.643 0.343 0.302

ρ4 0.836 0.579 0.518

ρ5 0.924 0.792 0.722

Table 4: Empirical Rejection prob. for Nonparametric Specification for ϕ2 with cU = 0.8

7. Conclusion

Based on the methodology of series estimation, we have developed in this paper a family of
goodness-of-fit statistics and derived their asymptotic properties. The implementation of
these statistics is straightforward. We have seen that the asymptotic results depend crucially
on the choice of the smoothing operator L. By choosing a stronger decaying sequence τ ,
our test becomes more powerful with respect to local alternatives but might lose desirable
consistency properties. We gave heuristic arguments how to choose the weights in practice.
In addition, in a Monte Carlo investigation our tests perform well in finite samples.
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A. Appendix

Throughout the Appendix, let C > 0 denote a generic constant that may be different in
different uses. For ease of notation let

∑
i =

∑n
i=1 and

∑
i′<i =

∑n
i=1

∑i−1
i′=1. Given m > 1,

Em and Fm denote the subspace of L2
Z and L2

W spanned by the functions {ej}mj=1 and

{fl}ml=1, respectively. Em and E⊥m (resp. Fm and F⊥m) denote the orthogonal projections on
Em (resp. Fm) and its orthogonal complement E⊥m (resp. F⊥m), respectively. Respectively,
given functions φ ∈ L2

Z and ψ ∈ L2
W we define by [φ]m and [ψ]m m-dimensional vectors

with entries [φ]j = E[φ(Z)ej(Z)] and [ψ]l = E[ψ(W )fl(W )] for 1 6 j, l 6 m.

A.1. Proofs of Section 2.

Proof of Theorem 2.1. Under H0 we have (Yi − ϕ0(Zi))f
τ
m(Wi) = Uif

τ
m(Wi) for all

m > 1 and consequently we observe

ς−1
mn

(
nSn−µmn

)
=

1

ςmnn

∑
i

mn∑
j=1

(
|Uif τj (Wi)|2− sjj

)
+

1

ςmnn

∑
i 6=i′

mn∑
j=1

UiUi′f
τ
j (Wi)f

τ
j (Wi′)

where the first summand tends in probability to zero as n→∞. Indeed, since E |Ufj(W )|2−
ςjj = 0, j > 1, it holds for all m > 1

1

(ςmn)2
E
∣∣∑

i

m∑
j=1

|Uif τj (Wi)|2−sjj
∣∣2 =

1

nς2
m

E
∣∣ m∑
j=1

|Uf τj (W )|2−sjj
∣∣2 6 1

nς2
m

E ‖Uf τm(W )‖4.

By using Assumptions 1 and 2, i.e., supj∈N E |fj(W )|4 6 ηf ηp and E[U4|W ] 6 σ4, we
conclude

E ‖Uf τm(W )‖4 6 max
16j6m

E |Ufj(W )|4
( m∑
j=1

τj

)2
6 ηf ηp σ

4
( m∑
j=1

τj

)2
. (A.1)

Let m = mn satisfy condition (2.4) then E ‖Uf τmn(W )‖4 = o
(
nς2
mn

)
. Therefore, it is

sufficient to prove

√
2(ςmnn)−1

∑
i 6=i′

mn∑
j=1

UiUi′f
τ
j (Wi)f

τ
j (Wi′)

d→ N (0, 1). (A.2)

Since ςmn = o(1) this follows from Lemma A.2 and thus, completes the proof.

Proof of Theorem 2.2. Similarly to the proof of Theorem 2.1 it is sufficient to study
the asymptotic behavior of n−1

∑mn
j=1

∑
i 6=i′ UiUi′f

τ
j (Wi)f

τ
j (Wi′). For any finite m > 1 we

obtain

E
∣∣∣ 1
n

m∑
j=1

∑
i 6=i′

UiUi′f
τ
j (Wi)f

τ
j (Wi′)−

1

n

∞∑
j=1

∑
i 6=i′

UiUi′f
τ
j (Wi)f

τ
j (Wi′)

∣∣∣2
6 E

[
E[U2

1U
2
2 |W1,W2]

(∑
j>m

f τj (W1)f τj (W2)
)2]
6 σ4ηp

(∑
j>m

τj

)2
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which, since
∑

j>1 τj = O(1), becomes sufficiently small (depending on m). Note that(
1√
n

∑
i Uif

τ
1 (Wi), . . . ,

1√
n

∑
i Uif

τ
m(Wi)

) d→ N (0, Σm). Hence, for any finite m > 1 we have

m∑
j=1

∣∣∣ 1√
n

∑
i

Uif
τ
j (Wi)

∣∣∣2 d→
m∑
j=1

λjχ
2
1j

with λj , 1 6 j 6 m, being eigenvalues of Σm. Moreover, we conclude for m > 1

1

n

m∑
j=1

∑
i 6=i′

UiUi′f
τ
j (Wi)f

τ
j (Wi′)

t =
m∑
j=1

(∣∣∣ 1√
n

∑
i

Uif
τ
j (Wi)

∣∣∣2 − 1

n

∑
i

|Uif τj (Wi)|2
)

d→
m∑
j=1

(
λjχ

2
1j − sjj

)
.

It is easily seen that
∑m

j=1(λjχ
2
1j − sjj) has expectation zero. Hence, following the lines

of page 198-199 of Serfling [1981] we obtain that
∑

j>m

(
λjχ

2
1j − sjj

)
becomes sufficiently

small (depending on m) and thus, completes the proof.

Proof of Proposition 2.3. For ease of notation let δn(·) := ς
1/2
mn n

−1/2δ(·). Under the
sequence of alternatives (2.6) the following decomposition holds true

Sn =
∥∥n−1

∑
i

Uif
τ
mn(Wi)

∥∥2
+ 2
〈
n−1

∑
i

Uif
τ
mn(Wi), n

−1
∑
i

δn(Zi)f
τ
mn(Wi)

〉
+
∥∥n−1

∑
i

δn(Zi)f
τ
mn(Wi)

∥∥2
=: In + 2IIn + IIIn.

Due to Theorem 2.1 we have (
√

2ςmn)−1
(
n In−µmn

) d→ N (0, 1). Consider IIn. We observe

nE |IIn| 6
mn∑
j=1

τj
(
E |Ufj(W )|2 E |δn(Z)fj(W )|2

)1/2
+
(
nE

∣∣∣ mn∑
j=1

τj [Tδn]jUfj(W )
∣∣∣2)1/2

6 σ

mn∑
j=1

τj
(
E |δn(Z)fj(W )|2

)1/2
+ σηp

√
n‖Tδn‖W .

From the definition of δn and condition (2.4) we infer that nE |IIn| = o(ςmn). Consider IIIn.
Employing again the definition of δn it is easily seen that nς−1

mnIIIn =
∑mn

j=1 τj [Tδ]
2
j +op(1).

We conclude (
√

2ςmn)−1nIIIn = 2−1/2
∑

j>1 δ
2
j + op(1), which completes the proof.

Proof of Proposition 2.4. Let δn(·) := n−1/2δ(·). Similarly to the proof of Theorem
2.2 it is straightforward to see that under the sequence of alternatives (2.7) it holds

1

n

∑
i 6=i′

mn∑
j=1

(Ui + δn(Zi))(Ui′ + δn(Zi′))f
τ
j (Wi)f

τ
j (Wi′)

=

∞∑
j=1

(∣∣∣ 1√
n

∑
i

Uif
τ
j (Wi) +

1

n

∑
i

δ(Zi)f
τ
j (Wi)

∣∣∣2 − 1

n

∑
i

∣∣Uif τj (Wi)
∣∣2)

d→
∞∑
j=1

λjχ1j(δj/λj)

similar to the lines of page 198-199 of Serfling [1981] and hence the assertion follows.
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Proof of Proposition 2.5. IfH0 fails we observe that
∑∞

j=1 τj [T (ϕ−ϕ0)]2j =
∫
W |LT (ϕ−

ϕ0)(w)pW (w)/ν(w)|2ν(w)dw > C‖LT (ϕ − ϕ0)‖2W > 0 since pW /ν is uniformly bounded
from zero and LT is nonsingular. Now since ςmnαn + µmn = o(n) it is sufficient to show
Sn =

∑∞
j=1 τj [T (ϕ− ϕ0)]2j + op(1). We make use of the decomposition

Sn =

mn∑
j=1

τj
∣∣n−1

∑
i

(Yi − ϕ0(Zi))fj(Wi)− [T (ϕ− ϕ0)]j
∣∣2

+2

mn∑
j=1

τj
(
n−1

∑
i

(Yi−ϕ0(Zi))fj(Wi)− [T (ϕ−ϕ0)]j
)
[T (ϕ−ϕ0)]j +

mn∑
j=1

τj [T (ϕ−ϕ0)]2j

= In + IIn + IIIn.

Due to condition E |Y − ϕ0(Z)|4 <∞ it is easily seen that In + IIn = op(1), which proves
the result.

Proof of Proposition 2.6. We make use of the decomposition

P
(

(
√

2 ςmn)−1
(
nSn − µmn

)
> q1−α

)
> P

(∥∥n−1/2
∑
i

(ϕ(Zi)− ϕ0(Zi))f
τ
mn(Wi)

∥∥2
+
∥∥n−1/2

∑
i

Uif
τ
mn(Wi)

∥∥2 − µmn

>
√

2 ςmnq1−α + 2|
〈
n−1

∑
i

(ϕ(Zi)− ϕ0(Zi))f
τ
mn(Wi),

∑
i

Uif
τ
mn(Wi)

〉
|
)
.

Uniformly over all ϕ ∈ Gρn it holds〈
n−1

∑
i

(ϕ(Zi)−ϕ0(Zi))f
τ
mn(Wi),

∑
i

Uif
τ
mn(Wi)

〉
= Op

(
max(

√
n‖LT (ϕ−ϕ0)‖W , ςmn)

)
.

Indeed, this is easily seen from

E
∣∣ mn∑
j=1

τj E[(ϕ(Z)−ϕ0(Z))fj(W )]
∑
i

Uifj(Wi)
∣∣2 6 σ2ηpn

mn∑
j=1

E[(ϕ(Z)−ϕ0(Z))f τj (W )]2

and further, denoting ψji = (ϕ(Zi)−ϕ0(Zi))fj(W )−E[(ϕ(Z)−ϕ0(Z))fj(W )], 1 6 j 6 mn,
1 6 i 6 n, from

E
∣∣n−1

∑
i 6=i′

mn∑
j=1

τjψjiUi′fj(Wi′)
∣∣2 =

n− 1

n

mn∑
j,j′=1

τjτj′ E
[
ψj1ψj′1

]
E
[
U2fj(W )fj′(W )

]
6 C

mn∑
j,j′=1

τjτj′ E
[
U2fj(W )fj′(W )

]
6 Cσ2 E

∣∣ mn∑
j=1

τjfj(W )
∣∣2 = O

( mn∑
j=1

τ2
j

)
.

Thereby, for all 0 < ε′ < 1 there exists some constant C > 0 such that

P
(

(
√

2 ςmn)−1
(
nSn − µmn

)
> q1−α

)
> P

(∥∥n−1/2
∑
i

(ϕ(Zi)− ϕ0(Zi))f
τ
mn(Wi)

∥∥2
+
∥∥n−1/2

∑
i

Uif
τ
mn(Wi)

∥∥2 − µmn

>
√

2 ςmnq1−α + C max(
√
n‖LT (ϕ − ϕ0)‖W , ςmn)

)
− ε′.
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Note that
∥∥n−1/2

∑
i Uif

τ
mn(Wi)

∥∥2
= µmn +Op(ςmn) due to Theorem 2.1. Moreover,

∥∥n−1/2
∑
i

(ϕ(Zi)− ϕ0(Zi))f
τ
mn(Wi)

∥∥2
> n

mn∑
j=1

τj [T (ϕ− ϕ0)]2j

− 2
∣∣〈∑

i

(ϕ(Zi)−ϕ0(Zi))f
τ
mn(Wi)−n[LT (ϕ−ϕ0)]mn , [LT (ϕ−ϕ0)]mn

〉
= In + IIn.

Consider IIn. For 1 6 j 6 mn let sj = τj [T (ϕ−ϕ0)]j/
(∑∞

j=1 τj [T (ϕ−ϕ0)]2j
)1/2

then clearly∑mn
j=1 s

2
j = 1 and thus E |

∑mn
j=1 sjfj(W )|2 6 ηfηp. Further, since supz∈Z |ϕ(z)−ϕ0(z)|2 6 C

we calculate

E |IIn|2 = nE
∣∣∣ mn∑
j=1

τj
(
(ϕ(Z)− ϕ0(Z))fj(W )− [T (ϕ− ϕ0)]j

)
[T (ϕ− ϕ0)]j

∣∣∣2
6 n

mn∑
j=1

τj [T (ϕ− ϕ0)]2j E
∣∣∣ mn∑
j=1

sj(ϕ(Z)− ϕ0(Z))fj(W )
∣∣∣2 = O

(
n‖LT (ϕ− ϕ0)‖2W

)
and hence IIn = Op(

√
n‖LT (ϕ−ϕ0)‖W ). Consider In. Note that ‖LT (ϕ−ϕ0)‖2W 6 C for

all ϕ ∈ Gρn we have In > Cn‖LT (ϕ − ϕ0)‖2W for n sufficiently large. Since on Gρn we have
n‖LT (ϕ− ϕ0)‖2W > ρ ςmn we obtain the result by choosing ρ sufficiently large.

A.2. Proofs of Section 3.

For ease of notation, we write in the following φ(·) for φ(·, ϑ0) and φϑl(·) for φϑl(·, ϑ0).

Proof of Theorem 3.1. The proof is based on the decomposition under Hp

Sp
n =

∥∥n−1
∑
i

Uif
τ
mn(Wi)

∥∥2
+2
〈
n−1

∑
i

Uif
τ
mn(Wi), n

−1
∑
i

(
φ(Zi)−φ(Zi, ϑ̂n)

)
f τmn(Wi)

〉
+ ‖n−1

∑
i

(
φ(Zi)− φ(Zi, ϑ̂n)

)
f τmn(Wi)‖2 = In + 2IIn + IIIn. (A.3)

Due to Theorem 2.1 it holds (
√

2ςmn)−1(nIn − µmn)
d→ N (0, 1). Consider IIIn. It holds

φ(Zi)−φ(Zi, ϑ̂n) = φϑ(Zi)
t(ϑ0−ϑ̂n)+(ϑ0−ϑ̂n)tφϑϑ(Zi, ϑn)t(ϑ0−ϑ̂n)/2 for some ϑn between

ϑ̂n and ϑ0. From the bounds imposed in Assumption 6 (ii) we infer

nIIIn 6 2n‖ϑ0−ϑ̂n‖2
( k∑
l=1

mn∑
j=1

τj [Tφϑl ]
2
j+

k∑
l=1

mn∑
j=1

τj
( 1

n

∑
i

φϑl(Zi)fj(Wi)−[Tφϑl ]j
)2)

+op(1).

For each 1 6 l 6 k we have

mn∑
j=1

[Tφϑl ]
2
j =

mn∑
j=1

(∫
W

(Tφϑl)(w)fj(w)pW (w)dw
)2
6
∫
W
|(Tφϑl)(w)pW (w)/ν(w)|2ν(w)dw

6 ηp‖Tφϑl‖
2
W 6 ηp E |φϑl(Z, ϑ0)|2 6 ηpηφ (A.4)

by applying Jensen’s inequality. Moreover, we calculate

k∑
l=1

mn∑
j=1

E
∣∣ 1
n

∑
i

φϑl(Zi)fj(Wi)− [Tφϑl ]j
∣∣2 6 kmn

n
sup
j,l>1

E |φϑl(Z)fj(W )|2 6 η4kmn

n
. (A.5)
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These estimates together with ‖ϑ0 − ϑ̂n‖ = Op(n
−1/2) imply nIIIn = op(ςmn). We are left

with the proof of nIIn = op(ςmn). We observe for each 1 6 l 6 k

E
∣∣∣ mn∑
j=1

τj

(
n−1/2

∑
i

Uifj(Wi)
(
n−1

∑
i

φϑl(Zi)fj(Wi)− [Tφϑl ]j
))∣∣∣

6 n−1/2
mn∑
j=1

τj
(
E |Ufj(W )|2

)1/2(E |φϑl(Z)fj(W )|2
)1/2

= O
(
n−1/2

mn∑
j=1

τj

)
= o(ςmn).

Now since n1/2(ϑ0 − ϑ̂n) = Op(1) we infer

nIIn = n1/2(ϑ0 − ϑ̂n)t
mn∑
j=1

τj

(
ς−1
mnn

−1/2
∑
i

Uifj(Wi)E[φϑ(Z)fj(W )]
)

+ op(1).

We observe for each 1 6 l 6 k

ς−2
mnn

−1 E
∣∣∣ mn∑
j=1

τj
∑
i

Uifj(Wi)[Tφϑl ]j

∣∣∣2 6 ς−2
mnσ

2ηp

mn∑
j=1

[Tφϑl ]
2
j 6 ς

−2
mnσ

2 η2
p ηf

which implies nIIn = op(ςmn) and thus, in light of decomposition (A.3), completes the
proof.

Proof of Theorem 3.2. For 1 6 j 6 mn we make use of the following decomposition

n−1/2
∑
i

fj(Wi)
(
Ui + φ(Zi)− φ(Zi, ϑ̂n)

)
= n−1/2

∑
i

(
fj(Wi)Ui −

k∑
l=1

[Tφϑl ]jhl(Vi)
)

+

k∑
l=1

(
n−1

∑
i

fj(Wi)φϑl(Zi)− [Tφϑl ]j

)(
n−1/2

∑
i

hl(Vi)
)

+
k∑
l=1

n−1
∑
i

fj(Wi)φϑl(Zi)rl + op(1) = Anj + Bnj + Cnj + op(1) (A.6)

where rk = (r1, . . . , rk)
t is a stochastic vector satisfying rk = op(1). Consequently, under

Hp we have

nSp
n =

mn∑
j=1

τjA
2
nj + 2

mn∑
j=1

τjAnj(Bnj + Cnj) +

mn∑
j=1

τj(Bnj + Cnj)
2 + op(1).

Clearly, for all 1 6 i 6 n the random variables Uif
τ
j (Wi) + E

[
f τj (W )φϑ(Z)t

]
hk(Vi), 1 6

j 6 mn, are centered with bounded second moment. Due to the proof of Theorem 2.2 it

is easily seen that
∑mn

j=1 τjA
2
nj

d→
∑∞

j=1 λ
p
j χ

2
1j . Inequality (A.5) yields

∑mn
j=1B

2
nj = op(1).

Since
∑mn

j=1[Tφϑ]2j 6 ηpηφ we have ‖E[fmn(W )φϑ(Z)t]rk‖2 6 k ηpηφ‖rk‖2 = op(1) and hence∑mn
j=1C

2
nj = op(1). Finally, the Cauchy-Schwarz inequality implies

∑mn
j=1 τjAnj(Bnj+Cnj) =

op(1), which completes the proof.
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Proof of Proposition 3.3. Without loss of generality we may assume δ = δ⊥ (otherwise
replace φ(Zi) by φ(Zi) + φϑ(Zi)

t E[δ(Z)φϑ(Z)]. Consider the case ς−1
mn = o(1). Under the

sequence of alternatives (2.6) the following decomposition holds true

Sp
n =

∥∥n−1
∑
i

(Ui + ς1/2
mn n

−1/2δ⊥(Zi))f
τ
mn(Wi)

∥∥2

+ 2
〈
n−1

∑
i

(Ui + ς1/2
mn n

−1/2δ⊥(Zi))f
τ
mn(Wi), n

−1
∑
i

(φ(Zi)− φ(Zi, ϑ̂n))f τmn(Wi)
〉

+
∥∥n−1

∑
i

(φ(Zi)− φ(Zi, ϑ̂n))f τmn(Wi)
∥∥2
.

Due to Proposition 2.3 and the proof of Theorem 3.1 it is sufficient to show〈
n−1

∑
i

δ⊥(Zi)f
τ
mn(Wi), n

−1/2
∑
i

(φ(Zi)− φ(Zi, ϑ̂n))f τmn(Wi)
〉

= op(
√
ςmn). (A.7)

Indeed, since δj⊥ =
√
τj E[δ⊥(Z)fj(W )] we have

mn∑
j=1

δj⊥n
−1/2

∑
i

(φ(Zi)−φ(Zi, ϑ̂n))fj(Wi) =
√
n(ϑ0−ϑ̂n)t

mn∑
j=1

δj⊥ E[φϑ(Z)fj(W )]+op(1)

6 ηp ηφ
√
n‖ϑ0 − ϑ̂n‖

∞∑
j=1

δ2
j⊥ + op(1) = Op(1)

and hence (A.7) holds true.
Consider the case

∑mn
j=1 τj = O(1). We make use of decomposition (A.6) where Ui is

replaced by Ui + n−1/2δ⊥(Zi). Similarly to the proof of Proposition 2.4 it is easily seen

that
∑mn

j=1 τjA
2
nj

d→
∑∞

j=1 λ
p
j χ

2
1j(δj⊥/λ

p
j ). Thereby, due to the proof of Theorem 3.2, the

assertion follows.

Proof of Proposition 3.4. Consider first the case ς−1
mn = o(1). Similar to the proof

of Theorem 3.1 we observe that ‖n−1
∑

i(φ(Zi, ϑ0) − φ(Zi, ϑ̂n))f τmn(Wi)‖2 = op(1) and

‖n−1
∑

i(Yi − φ(Zi, ϑ0))f τmn(Wi)‖2 =
∑∞

j=1 τj [T (ϕ − φ(·, ϑ0))]2j + op(1). Thus, the result

follows as in the proof of Proposition 2.5. In case of
∑mn

j=1 τj = O(1), we obtain similarly

that Sp
n =

∑mn
j=1 τj

∣∣n−1
∑

i

(
(Yi−φ(Zi, ϑ0))fj(Wi)

∣∣2 +op(1) and hence, Sp
n =

∑∞
j=1 τj [T (ϕ−

φ(·, ϑ0))]2j + op(1).

Proof of Proposition 3.5. Consider the case ς−1
mn = o(1). The basic inequality (a −

b)2 > a2/2− b2, a, b ∈ R, yields

P
(

(
√

2 ςmn)−1
(
nSp

n − µmn
)
> q1−α

)
> P

(
1/2
∥∥n−1/2

∑
i

(ϕ(Zi)− φ(Zi, ϑ0))f τmn(Wi)
∥∥2

+
∥∥n−1/2

∑
i

Uif
τ
mn(Wi)

∥∥2 − µmn

>
√

2 ςmnq1−α + 2|
〈
n−1

∑
i

(ϕ(Zi)− φ(Zi, ϑ̂n))f τmn(Wi),
∑
i

Uif
τ
mn(Wi)

〉
|

+
∥∥n−1/2

∑
i

(φ(Zi, ϑ0) − φ(Zi, ϑ̂n))f τmn(Wi)
∥∥2
)
. (A.8)
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From the proof of Theorem 3.1 we infer
∥∥n−1/2

∑
i(φ(Zi, ϑ̂n) − φ(Zi, ϑ0))f τmn(Wi)

∥∥2
=

op(ςmn) and

〈
n−1

∑
i

(ϕ(Zi)− φ(Zi, ϑ̂n))f τmn(Wi),
∑
i

Uif
τ
mn(Wi)

〉
=
〈
n−1

∑
i

(ϕ(Zi)− φ(Zi, ϑ0))f τmn(Wi),
∑
i

Uif
τ
mn(Wi)

〉
+ op(ςmn).

Thus, following line by line the proof of Proposition 2.6, the assertion follows. In case of∑mn
j=1 τj = O(1) the assertion follows similarly.

A.3. Proofs of Section 4.

In the following, we denote [Q̂]kn = n−1
∑

i ekn(Zi)ekn(Zi)
t. By Assumption 7, the eigen-

values of E[ekn(Z)ekn(Z)t] are bounded away from zero and hence, it may be assumed that
E[ekn(Z)ekn(Z)t] = Ikn (cf. Newey [1997], p. 161).

Proof of Theorem 4.1. The proof is based on the decomposition (A.3) where the esti-
mator φ(·, ϑ̂n) is replaced by ϕkn(·) given in (4.1). It holds nIIIn = op(ςmn), which can be
seen as follows. We make use of

IIIn/2 6
∥∥ 1

n

∑
i

(Eknϕ0(Zi)− ϕkn(Zi))f
τ
mn(Wi)

∥∥2
+
∥∥ 1

n

∑
i

(
E⊥knϕ0

)
(Zi)f

τ
mn(Wi)

∥∥2

=: An1 + An2.

Consider An1. We observe

An1 6 2‖E[f τmn(W )ekn(Z)t][Q̂]−1
kn

([Q̂]kn [ϕ0]kn − n−1
∑
i

Yiekn(Zi))‖2

+ 2‖Eknϕ0 − ϕkn‖
2
Z

mn∑
j=1

τj

kn∑
l=1

|n−1
∑
i

el(Zi)fj(Wi)− [T ]jl|2

=: 2Bn1 + 2Bn2. (A.9)

For Bn1 we evaluate due to the relation [Q̂]−1
kn

= Ikn − [Q̂]−1
kn

([Q̂]kn − Ikn) that

Bn1 6 2
∥∥E[f τmn(W )ekn(Z)t]n−1

∑
i

(Eknϕ0(Zi)− Yi)ekn(Zi)
∥∥2

+2
∥∥E[f τmn(W )ekn(Z)t]

∥∥2∥∥[Q̂]kn−Ikn
∥∥2 ∥∥[Q̂]−1

kn

∥∥2 ∥∥n−1
∑
i

(Eknϕ0(Zi)−Yi)ekn(Zi)
∥∥2
.

Since the spectral norm of a matrix is bounded by its Frobenius norm it holds

E
∥∥[Q̂]kn − Ikn

∥∥2
6 n−1

kn∑
l,l′=1

E |el(Z)el′(Z)|2 6 ηe n−1k2
n.
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Further, from E[(Eknϕ0(Z)− Y )ekn(Z)] = 0 we deduce

E
∥∥E[f τmn(W )ekn(Z)t]n−1

∑
i

(Eknϕ0(Zi)− Yi)ekn(Zi)
∥∥2

6 n−1
mn∑
j=1

E
∣∣ kn∑
j=1

E[fj(W )el(Z)](Eknϕ0(Z)− Y )el(Z)|2

6 Cηp n
−1

mn∑
j=1

kn∑
j=1

E[fj(W )el(Z)]2 = O(n−1kn)

where we used the definition of Fγ and that E[U2|Z] is bounded. Moreover, since the

difference of eigenvalues of [Q̂]kn and Ikn is bounded by ‖[Q̂]kn−Ikn‖, the smallest eigenvalue

of [Q̂]kn converges in probability to one and hence, ‖[Q̂]−1
kn
‖2 = 1+op(1). Further, note that

‖E[f τmn(W )ekn(Z)t]‖2 6
∑mn

j=1

∑kn
j=1 E[fj(W )el(Z)]2 = O(kn). Consequently,

n‖Eknϕ0 − ϕkn‖
2
Z = Op(kn) (A.10)

and since kn = o(ςmn) we proved nBn1 = op(ςmn). In addition, applying inequality (A.5)
together with equation (A.10) yields nBn2 = op(ςmn). Consequently, nAn1 = o(ςmn). Con-
sider An2. Similar to the derivation of (A.4) we obtain

E
∥∥n−1

∑
i

(
E⊥knϕ0

)
(Zi)f

τ
mn(Wi)

∥∥2
6 2ηp‖E⊥knϕ0‖2Z + 2n−1

mn∑
j=1

E |E⊥knϕ0(Z)fj(W )|2.

We have

mn∑
j=1

τj E |(E⊥knϕ0)(Z)fj(W )|2 = O
(
γ−1
kn

mn∑
j=1

τj

)
= o(ςmn) (A.11)

and n‖E⊥knϕ0‖2Z = O(nγ−1
kn

) = o(ςmn). Hence, nIIIn = op(ςmn). Consider IIn. We calculate

nIIn 6
∣∣∣ mn∑
j=1

τj
∑
i

Uifj(Wi)([ϕ0]kn−[ϕ]kn)t
(
n−1

∑
i

ekn(Zi)fj(Wi)−E
[
ekn(Z)fj(W )

])∣∣∣
+
∣∣∣ mn∑
j=1

τj

kn∑
l=1

([ϕ0]l − [ϕ]l)
(∑

i

Uifj(Wi)[T ]jl

)∣∣∣
+
∣∣∣ mn∑
j=1

τj

(∑
i

Uifj(Wi)
)(
n−1

∑
i

E⊥knϕ0(Zi)fj(Wi)− E[E⊥knϕ0(Z)fj(W )]
)∣∣∣

+
∣∣∣ mn∑
j=1

τj

(∑
i

Uifj(Wi)
)
E[E⊥knϕ0(Z)fj(W )]

∣∣∣ = Cn1 + Cn2 + Cn3 + Cn4. (A.12)

Consider Cn1. Applying the Cauchy-Schwarz inequality twice gives

Cn1 6 ‖Eknϕ0−ϕkn‖Z
mn∑
j=1

τj
∣∣∑

i

Uifj(Wi)
∣∣ ( kn∑

l=1

|n−1
∑
i

el(Zi)fj(Wi)−E[el(Z)fj(W )]|2
)1/2

.
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From E |
∑

i Uifj(Wi)|2 6 n ηfσ
2, relation (A.10), and inequality (A.5) we infer Cn1 =

op(ςmn) due to condition (4.2). For Cn2 we evaluate

Cn2 6 ‖Eknϕ0 − ϕkn‖Z
( kn∑
l=1

∣∣ mn∑
j=1

∑
i

Uifj(Wi)[T ]jl
∣∣2)1/2

.

Now
∑mn

j=1

∑kn
l=1[T ]2jl = O(kn) together with (A.10) yields Cn2 = op(1). Consider Cn3.

Since E[U2|W ] 6 σ2 we conclude similarly as in inequality (A.11) that

ECn3 6
mn∑
j=1

τj
(
E |Ufj(W )|2

)1/2(E |E⊥knϕ0(Z)fj(W )|2
)1/2

= O
(
γ
−1/2
kn

mn∑
j=1

τj

)
= o(ςmn).

Consider Cn4. We calculate

E |Cn4|2 6 n ηp σ2
mn∑
j=1

[TE⊥knϕ0]2j 6 n η
2
p σ

2‖TE⊥knϕ0‖2W = O(nγ−1
kn

) = o(ςmn).

Consequently, in light of decomposition (A.12) we obtain nIIn = o(ςmn), which completes
the proof.

Proof of Theorem 4.2. Employing the equality [Q̂]−1
kn

= Ikn − [Q̂]−1
kn

([Q̂]kn − Ikn) we

obtain for all 1 6 j 6 mn

n−1/2
∑
i

fj(Wi)
(
Ui + ϕ0(Zi)− ϕkn(Zi)

)
= n−1/2

∑
i

(
fj(Wi)Ui + E[fj(W )ekn(Z)t]ekn(Zi)

(
ϕ0(Zi)− Yi

))
+ n−1/2

∑
i

E
[
fj(W )ekn(Z)t

]
[Q̂]−1

kn

(
[Q̂]kn − Ikn

)
ekn(Zi)

(
Eknϕ0(Zi)− Yi

)
+
(
n−1

∑
i

fj(Wi)ekn(Zi)− E
[
fj(W )ekn(Z)t

])√
n
(
[ϕ0]kn − [ϕkn ]kn

)
− n−1/2

∑
i

E[fj(W )ekn(Z)t]ekn(Zi)E
⊥
knϕ0(Zi) = Anj +Bnj + Cnj +Dnj . (A.13)

Due to Assumption 7 (ii) we may assume that {e1, . . . , ek} forms an orthonormal system
in L2

Z and hence
∑k

l=1 E[fj(W )el(Z)]2 is bounded uniformly in k. Thereby, we conclude∑mn
j=1 τj

∑
l>kn

E[fj(W )el(Z)]el(·) = o(1). Now following line by line the proof of Theorem
2.2 we deduce

mn∑
j=1

τjA
2
nj =

m∑
j=1

τj E
∣∣∣n−1/2

∑
i

Ui

(
fj(Wi)+

∑
l>1

E[fj(W )el(Z)]el(Zi)
)∣∣∣2+op(1)

d→
∞∑
j=1

λej χ
2
1j .

Moreover, we see similarly to the proof of Theorem 4.1 that
∑mn

j=1 τj(B
2
nj + C2

nj + D2
nj) =

op(1), which completes the proof.
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Proof of Lemma 4.3. Note that the squared Frobenius norm of Σ̂mn −Σmn is given by

mn∑
j,l=1

∣∣∣n−1
∑
i

(Yi − ϕkn(Zi))
2f τj (Wi)f

τ
l (Wi)− sjl

∣∣2
6 ‖ϕkn − Eknϕ‖

4
Z

mn∑
j,l=1

E
[
‖ekn(Z)‖2f τj (W )f τl (W )

]2
+

mn∑
j,l=1

E
[
(E⊥knϕ0(Z))2f τj (W )f τl (W )

]2
+ op(1)

6 ‖ϕkn − Eknϕ‖
4
ZO
(( mn∑

j=1

τj
)2)

+ O
((
γ−1
kn

mn∑
j=1

τj
)2)

+ op(1) = op(1)

by using relation (A.10). Consequently, the Frobenius norm of Σ̂mn equals ςmn + op(1).

Consistency of the trace of Σ̂mn is seen similarly.

Proof of Proposition 4.4. Similar to the proof of Proposition 3.3 it is sufficient to show

〈
n−1

∑
i

δ(Zi)f
τ
mn(Wi), n

−1/2
∑
i

(ϕ0(Zi)− ϕkn(Zi))f
τ
mn(Wi)

〉
= op(

√
ςmn). (A.14)

By employing Jensen’s inequality and estimate (A.10) we obtain

mn∑
j=1

τj [Tδ]j
1√
n

∑
i

(Eknϕ0(Zi)− ϕkn(Zi))fj(Wi)

6
√
n‖Tδ‖τ‖T (Eknϕ0 − ϕkn)‖W + op(1) = op(ςmn).

Similarly to the upper bounds of Cn3 and Cn4 in the proof of Theorem 4.1 it is straight-
forward to see that

∑mn
j=1 τj [Tδ]jn

−1/2
∑

iE
⊥
kn
ϕ0(Zi)fj(Wi) = op(ςmn) and, hence equation

(A.14) holds true. Consider the case
∑mn

j=1 τj = O(1). We make use of decomposition (A.13)

where Ui is replaced by Ui+n−1/2δ(Zi). Similarly to the proof of Proposition 2.4 it is easily

seen that
∑mn

j=1 τjA
2
nj

d→
∑∞

j=1 λ
e
j χ

2
1j(δj/λ

e
j). Thereby, due to the proof of Theorem 4.2,

the assertion follows.

Proof of Proposition 4.5. Similar to the proof of Proposition 3.4.

Proof of Proposition 4.6. We make use of inequality (A.8) where φ(·, ϑ̂n) is replaced

by ϕkn . From the proof of Theorem 4.1 we infer
∥∥n−1/2

∑
i(ϕkn(Zi)−ϕ0(Zi))f

τ
mn(Wi)

∥∥2
=

op(ςmn) and〈
n−1

∑
i

(ϕ(Zi)− ϕkn(Zi))f
τ
mn(Wi),

∑
i

Uif
τ
mn(Wi)

〉
=
〈
n−1

∑
i

(ϕ(Zi)− ϕ0(Zi))f
τ
mn(Wi),

∑
i

Uif
τ
mn(Wi)

〉
+ op(ςmn)

uniformly over all ϕ ∈ Iρn. Thus, following line by line the proof of Proposition 2.6, the
assertion follows.
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A.4. Proofs of Section 5.

Recall that [T ]k = E[ek(W )ek(Z)t]. Further, we denote [T̂ ]k = n−1
∑n

i=1 ek(Wi)ek(Zi)
t

and [ĝ]k = n−1
∑n

i=1 Yiek(Wi). In the following, we introduce the function ϕkn(·) :=

ekn(·)t[T ]−1
kn

[g]kn which belongs to L2
Z . For all k > 1 let us denote Ωk := {‖[T̂ ]−1

k ‖ 6√
n} and fk := {‖Rk‖‖[T ]−1

k ‖ 6 1/2} where Rk = [T̂ ]k − [T ]k. Note that E1Ωckn
=

P(Ωc
kn

) = o(1) (cf. proof of Proposition 3.1 of Breunig and Johannes [2011]) and, hence

1Ωkn
= 1 + op(1). For a sequence of weights ω = (ωj)j>1 we define the weighted norm

‖φ‖ω =
(∑

j>1 ωj(
∫
Z φ(z)ej(z)ν(z)dz)2

)1/2
.

Proof of Theorem 5.1. For the proof we make use of decomposition (A.3) where the
estimator φ(·, ϑ̂n) is replaced by ϕ̂kn given in (5.2). Consider IIIn. Observe

IIIn 6 2‖n−1
∑
i

(ϕkn(Zi)− ϕ̂kn(Zi))f
τ
mn(Wi)‖2

+ 2‖n−1
∑
i

(
ϕkn(Zi)− ϕ0(Zi)

)
f τmn(Wi)‖2 = 2An1 + 2An2. (A.15)

ConsiderAn1. Making use of the relation [T̂ ]kn [T ]−1
kn

[g]kn−[ĝ]kn = n−1
∑

i fkn(Wi)(ϕkn(Zi)−
Yi) we obtain

An1 6 4
∥∥E[fmn(W )ekn(Z)t][T ]−1

kn

∥∥2∥∥n−1
∑
i

fkn(Wi)(ϕkn(Zi)− Yi)
∥∥2

+ 4
∥∥E[fmn(W )ekn(Z)t][T ]−1

kn
Rkn [T̂ ]−1

kn
n−1

∑
i

fkn(Wi)(ϕkn(Zi)− Yi)
∥∥2

+ 2‖ϕkn − ϕ̂kn‖2υ
mn∑
j=1

τj

kn∑
l=1

υ−1
l |n

−1
∑
i

el(Zi)fj(Wi)− [T ]jl|2

= 4Bn1 + 4Bn2 + 2Bn3.

From Lemma A.1 of Breunig and Johannes [2011] we deduce ‖n−1/2
∑

i ekn(Wi)
(
ϕkn(Zi)−

Yi
)
‖2 = Op(kn) and since ‖E[fmn(W )ekn(Z)t][T ]−1

kn
‖ = O(1) we have nBn1 = o(ςmn).

Further, consider Bn2. By employing ‖[T̂ ]−1
k ‖1fk 6 2‖[T ]−1

k ‖ and ‖[T̂ ]−1
k ‖

2
1Ωk 6 n for all

k > 1 it follows

Bn2 1Ωkn
(1fkn +1fckn

) = O
(

4‖[T ]−1
kn
‖2‖Rkn‖2‖n−1

∑
i

fkn(Wi)
(
ϕkn(Zi)− Yi

)
‖2

+ n‖Rkn‖2‖n−1
∑
i

fkn(Wi)
(
ϕkn(Zi) − Yi

)
‖2 1fckn

)
.

Further, since n‖Rkn‖2 = Op(k
2
n) (cf. Lemma A.1 of Breunig and Johannes [2011]) and

n‖Rkn‖2‖n−1/2
∑

i ekn(Wi)
(
ϕkn(Zi) − Yi

)
‖2 1fckn = op(1) (cf. proof of Proposition 3.1 of

Breunig and Johannes [2011]) it follows nBn2 1Ωkn
= o(ςmn). This together with estimate
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(A.5) implies nAn1 = op(ςmn). Consider An2. We observe

EAn2 6 2‖T (ϕkn − ϕ0)‖2W + 2n−1 E ‖
(
ϕkn(Z)− ϕ0(Z)

)
f τmn(W )‖2

6 2ηpd‖ϕkn−ϕ0‖2υ+
2

n

∑
l>1

l2
(∫
Z

(ϕkn−ϕ0)(z)el(z)ν(z)dz
)2

mn∑
j=1

τj
∑
l>1

l−2 E |el(Z)fj(W )|2

= O
(υkn
γkn
‖ϕkn − ϕ0‖2γ + ‖ϕkn − ϕ0‖2γ

k2
n

nγkn

mn∑
j=1

τj

)
. (A.16)

where we used Lemma A.2 of Johannes and Schwarz [2010], i.e., ‖ϕkn −ϕ0‖2w = O(wknγ
−1
kn

)

for a nondecreasing sequence w. Condition (5.3) together with the estimate k2
n 6 σ

4
∑mn

j=1 τj
for n sufficiently large implies nAn2 = op(ςmn). Consequently, due to (A.15) we have shown
nIIIn = op(ςmn). The proof of nIIn = op(ςmn) is based on decomposition (A.12) where ϕkn
and E⊥knϕ0 are replaced by ϕ̂kn and ϕkn − ϕ0, respectively. Consider Cn1. We calculate

Cn1 6 ‖ϕ̂kn − ϕkn‖υ
mn∑
j=1

τj
∣∣∑

i

Uifj(Wi)
∣∣( kn∑

l=1

υ−1
l

∣∣n−1
∑
i

el(Zi)fj(Wi)− [T ]jl
∣∣2)1/2

Since
√
n‖ϕ̂kn − ϕkn‖υ = op(ς

1/2
mn ) we obtain, similarly as in the proof of Theorem 4.1,

Cn1 = op(ςmn). Consider Cn2. Again similarly to the proof of Theorem 4.1 we observe

Cn2 =
∣∣∣ mn∑
j=1

τj

kn∑
l=1

[T ]jl

∫
Z

(ϕ̂kn − ϕkn)(z)el(z)ν(z)dz
(∑

i

Uifj(Wi)
)∣∣∣

6
(
n‖ϕ̂kn − ϕkn‖2υ

)1/2(
σ2

kn∑
l=1

υ−1
l

mn∑
j=1

[T ]2jl

)1/2
+ op(1) = o(ςmn)

by exploiting
∑mn

j=1[T ]2jl 6 ηp‖Tel‖2W 6 d η2
pυl. Consider Cn3. Since E[U2|W ] 6 σ2 we

conclude similarly as in inequality (A.11) using Lemma A.2 of Johannes and Schwarz [2010]

ECn3 6 σ
mn∑
j=1

τj
(
E |(ϕkn(Z)−ϕ0(Z))fj(W )|2

)1/2
6 η2 πσ√

6

kn√
γkn
‖ϕkn−ϕ0‖γ

mn∑
j=1

τj = o(ςmn).

Consider Cn4. Again exploring the link condition T ∈ T υd,D and Lemma A.2 of Johannes
and Schwarz [2010] we calculate

E |Cn4|2 6 nσ
mn∑
j=1

[T (ϕkn − ϕ0)]2j 6 nσ‖T (ϕkn − ϕ0)‖2W

6 nσd‖ϕkn − ϕ0‖2υ 6 4Ddρσ
nυkn
γkn
‖ϕkn − ϕ0‖2γ = o(ςmn).

Consequently, the estimates for Cn1, Cn2, Cn3, and Cn4 imply nIIn = op(ςmn), which
completes the proof.
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Proof of Theorem 5.2. Observe [T̂ ]kn [T ]−1
kn

[g]kn− [ĝ]kn = n−1
∑

i ekn(Wi)(ϕkn(Zi)−Yi)
and hence, for all 1 6 j 6 mn

n−1/2
∑
i

fj(Wi)
(
Ui + ϕ0(Zi)− ϕ̂kn(Zi)

)
= n−1/2

∑
i

(
fj(Wi)Ui + E

[
fj(W )ekn(Z)t

]
[T ]−1

kn
ekn(Wi)

(
ϕkn(Zi)− Yi

))
− n−1/2

∑
i

E
[
fj(W )ekn(Z)t

]
[T ]−1

kn
Rkn [T̂ ]−1

kn
ekn(Wi)

(
ϕkn(Zi)− Yi

)
+
(
n−1

∑
i

fj(Wi)ekn(Zi)
t−E

[
fj(W )ekn(Z)t

])
[T̂ ]−1

kn

(
n−1/2

∑
i

ekn(Wi)
(
ϕkn(Zi)−Yi

))
+ n−1/2

∑
i

(
ϕ0(Zi)− ϕkn(Zi)

)
fj(Wi) = Anj + Bnj + Cnj +Dnj . (A.17)

Consider Anj . For each j > 1, note that ‖E
[
fj(W )ek(Z)t

]
[T ]−1

k ‖ is bounded uniformly in
k and further that E[ekn(W )(ϕkn(Z)−ϕ0(Z))] = 0. Now similarly to the proof of Theorem
4.2 we conclude

mn∑
j=1

τjA
2
nj =

mn∑
j=1

τj

∣∣∣n−1/2
∑
i

Ui
(
fj(Wi)− ej(Wi)

)∣∣∣2 + op(1)
d→
∞∑
j=1

λnpj χ2
1j .

Moreover, as in the proof of Theorem 5.1 it can be seen that
∑mn

j=1 τj(B
2
nj + C2

nj +D2
nj) =

op(1), which proves the result

Proof of Proposition 5.3. Consider the case ς−1
mn = o(1). Further, under (5.5) we ob-

serve by following the upper bound for An1 in the proof of Theorem 5.1 that

mn∑
j=1

∣∣∣n−1/2
∑
i

(ϕ̂kn(Zi)− ϕ(Zi))f
τ
j (Wi)

∣∣∣2
=

mn∑
j=1

1

n

∣∣∣∑
i

(ϕ̂kn(Zi)− ϕkn(Zi))f
τ
j (Wi)

∣∣∣2 +

mn∑
j=1

∣∣∣ ςmn
n

∑
i

δ(Zi)f
τ
j (Wi)

∣∣∣2 + op(ςmn)

= ςmn

mn∑
j=1

δ2
j + op(ςmn).

Consequently, the result follows as in the proof of Theorem 5.1. For
∑mn

j=1 τj = O(1) we
conclude similarly.

Proof of Proposition 5.4. Following the lines of the proof of Theorem 5.1 it can be
seen that ‖n−1

∑
i(ϕ̂kn(Zi) − ϕkn(Zi))f

τ
mn(Wi)‖2 = op(1) with ϕ ∈ Fργ . On the other

hand, ‖n−1
∑

i(ϕkn(Zi) − ϕ(Zi))f
τ
mn(Wi)‖2 = C‖T (ϕkn − ϕ)‖2W + op(1). Further, since

‖T (ϕkn − ϕ)‖2W = ‖g − Tϕ‖2W + o(1) the result follows as in the proof of Proposition
3.4.

Proof of Proposition 5.5. We make use of inequality (A.8) where φ(·, ϑ̂n) is replaced

by ϕ̂kn . From the proof of Theorem 5.1 we infer
∥∥n−1/2

∑
i(ϕ̂kn(Zi)−ϕ0(Zi))f

τ
mn(Wi)

∥∥2
=
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op(ςmn) and〈
n−1

∑
i

(ϕ(Zi)− ϕ̂kn(Zi))f
τ
mn(Wi),

∑
i

Uif
τ
mn(Wi)

〉
=
〈
n−1

∑
i

(ϕ(Zi)− ϕ0(Zi))f
τ
mn(Wi),

∑
i

Uif
τ
mn(Wi)

〉
+ op(ςmn)

uniformly over all ϕ ∈ J ρn . Consequently, following line by line the proof of Proposition 2.6,
the assertion follows.

A.5. Technical assertions.

Let us introduce Xii′ :=
√

2(ςmnn)−1
∑mn

j=1 UiUi′f
τ
j (Wi)f

τ
j (Wi′) and

Qni :=

{ ∑i−1
l=1 Xli, for i = 2, . . . , n,

0, for i = 1 and i > n.
(A.18)

Then clearly

(
√

2ςmnn)−1
∑
i 6=i′

mn∑
j=1

UiUi′f
τ
j (Wi)f

τ
j (Wi′) =

√
2(ςmnn)−1

∑
i<i′

mn∑
j=1

UiUi′f
τ
j (Wi)f

τ
j (Wi′)

=
∑
i<i′

Xii′ =

n∑
i=1

Qni.

Let Bni := B((Z1, Y1,W1), . . . , (Zi, Yi,Wi)), 1 6 i 6 n, n > 1, be the σ-algebra generated
by (Z1, Y1,W1), . . . , (Zi, Yi,Wi). Since Uif

τ
j (Wi), 1 6 i 6 n, are centered random vari-

ables it follows that {(
∑i

i′=1Qni′ ,Bni), i > 1} is a Martingale for each n > 1 and hence
{(Qni,Bni), i > 1} is a Martingale difference array for each n > 1. Moreover, it satisfies the
conditions of Proposition A.1 as shown in the following technical result.

Proposition A.1. If {(Qni,Bni), i > 1} is a Martingale difference array for each n > 1
satisfying conditions

∞∑
i=1

E |Qni|2 6 1 for all n > 1, (A.19)

∞∑
i=1

Q2
ni = 1 + op(1), (A.20)

sup
i>1
|Qni| = op(1) (A.21)

then
∑∞

i=1Qni
d→ N(0, ν).

Proof. See Awad [1981].

Note that this result has been also applied by Ghorai [1980] to establish asymptotic nor-
mality of an orthogonal series type density estimator.

Lemma A.2. Let Qni be defined as in (A.18). Let Assumptions 1–4 be satisfied and assume(∑mn
j=1 τj

)3
= o(n). Then conditions (A.19)–(A.21) hold true.
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Proof. Proof of (A.19). Observe that E[X1iX1i′ ] = 0 for i 6= i′ and thus, for i = 2, . . . , n we
have

E |Qni|2 = E |X1i+· · ·+Xi−1,i|2 = (i−1)E |X12|2 =
2(i− 1)

n2ς2
mn

E
∣∣ mn∑
j=1

U1f
τ
j (W1)U2f

τ
j (W2)

∣∣2
=

2(i− 1)

n2ς2
mn

mn∑
j,j′=1

(
E[U2f τj (W )f τj′(W )]

)2
=

2(i− 1)

n2

by the definition of ςmn . Thereby, we conclude

n∑
i=1

E |Qni|2 =
2

n2

n−1∑
i=1

i =
n(n− 1)

n2
= 1− 1

n
(A.22)

which proves (A.19).
Proof of (A.20). Using relation (A.22) we observe

E
∣∣ n∑
i=1

Q2
ni − 1

∣∣2 =
n∑
i=1

EQ4
ni + 2

∑
i<i′

EQ2
niQ

2
ni′ − 1 + o(1) =: In + IIn − 1 + o(1).

Consider In. Observe that

E |Qni|4 = E
∣∣ i−1∑
i′=1

Xi′i

∣∣4 = E
∣∣∣ √2

nςmn

mn∑
j=1

τjUifj(Wi)

i−1∑
i′=1

Ui′fj(Wi′)
∣∣∣4

6
4

n4ς4
mn

( mn∑
j=1

τj

)3
mn∑
j=1

E |Ufj(W )|4
(

(i− 1)τj E |Ufj(W )|4 + 3(i− 1)(i− 2)ς2
jj

)
where we used that E[Ufj(W )] = 0. Since

∑n
i=1 3(i−1)(i−2) = n(n−1)(n−2) we conclude

In 6
4

n4ς4
mn

( mn∑
j=1

τj

)3(n(n− 1)

2

mn∑
j=1

τj(E |Ufj(W )|4)2+n(n−1)(n−2)

mn∑
j=1

s2jj E |Ufj(W )|4
)

Therefore, applying maxj>1 E |Ufj(W )|4 6 ηf ηp σ4 and
∑mn

j=1 τj = o(n1/3) yields In = o(1).
Consider IIn. We calculate for i < i′

Q2
niQ

2
ni′ =

( i−1∑
k=1

X2
ki

)( i′−1∑
k=1

X2
ki′

)
+
( i−1∑
k=1

X2
ki

)( i′−1∑
k 6=k′

Xki′Xk′i′

)

+
( i−1∑
k 6=k′

XkiXk′i

)( i′−1∑
k=1

X2
ki′

)
+
( i−1∑
k 6=k′

XkiXk′i

)( i′−1∑
k 6=k′

Xki′Xk′i′

)
=: Aii′ + Bii′ + Cii′ + Dii′ .

Consider Aii′ . Exploiting relation (A.22) and using
∑

i<i′(i− 1) =
∑n

i′=1(i′− 1)(i′− 2)/2 =
n(n − 1)(n − 2)/6 and further

∑
i<i′(i − 1)(i′ − 3) =

∑n
i′=1(i′ − 3)(i′ − 2)(i′ − 1)/2 =
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n(n− 1)(n− 2)(n− 3)/8 we obtain

2
∑
i<i′

EAii′ = 4EX2
12X

2
23

∑
i<i′

(i− 1) + 2(EX2
12)2

∑
i<i′

(i− 1)(i′ − 3) + o(1)

=
8n(n− 1)(n− 2)

3n4ς4
mn

( mn∑
j,j′,l,l′=1

ςjj′ςll′ EU4f τj (W )f τj′(W )f τl (W )f τl′ (W )
)

+
n(n− 1)(n− 2)(n− 3)

n4
+ o(1).

Moreover, applying the Cauchy-Schwarz inequality twice gives

mn∑
j,j′,l,l′=1

sjj′sll′ EU4f τj (W )f τj′(W )f τl (W )f τl′ (W ) 6 max
16j6mn

E |Ufj(W )|4
( mn∑
j, j′=1

√
τjτj′sjj′

)2

6 ηf ηp σ
4ς2
mn

( mn∑
j=1

τj

)2
.

Thereby, it holds 2
∑

i<i′ EAii′ = 1 + o(1). Now consider Bii′ . Since {fl}l>1 forms an
orthonormal basis on the support of W we obtain

E
( i−1∑
k=1

X2
ki

)( i′−1∑
k 6=k′

Xki′Xk′i′

)
= 2

i−1∑
k=1

EX2
kiXki′Xii′

6
8(i− 1)

n4ς4
mn

mn∑
j,j′=1

E
∣∣∣U3

1 f
τ
j (W1)f τj′(W1)U3

2 f
τ
j (W2)f τj′(W2)

mn∑
l,l′=1

ςll′f
τ
l (W1)f τl′ (W2)

∣∣∣
6

8(i− 1)σ2η2
p

n4ς3
mn

( mn∑
j,j′=1

E |U2f τj (W )f τj′(W )|2
)
6

8(i− 1)σ6ηf η
3
p

n4ς3
mn

( mn∑
j=1

τj

)2
.

This, together with relation (A.22), yields
∑

i<i′ EBii′ = o(1). Further, it is easily seen that∑
i<i′ ECii′ = o(1). Consider Dii′ . Using twice the law of iterated expectation gives

EDii′ = E
( i−1∑
k 6=k′

XkiXk′i

)( i′−1∑
k 6=k′

Xki′Xk′i′

)
= 4

i−1∑
k<k′

EXkiXk′iXki′Xk′i′

= 4
i−1∑
k<k′

E
[
XkiXk′i E[Xki′Xk′i′ |(Yk, Zk,Wk), (Yk′ , Zk′ ,Wk′), (Yi, Zi,Wi)]

]
=

8

n2ς2
mn

i−1∑
k<k′

E
[
E[XkiXk′i|(Yk, Zk,Wk), (Yk′ , Zk′ ,Wk′)]

mn∑
j,j′=1

sjj′Ukf
τ
j (Wk)Uk′f

τ
j′(Wk′)

]
=

8

n4ς4
mn

E
∣∣∣ mn∑
j,j′=1

sjj′U1f
τ
j (W1)U2f

τ
j′(W2)

∣∣∣2(i− 1)(i− 2) 6
8σ4η2

p

n4ς2
mn

(i− 1)(i− 2).

Since ς−1
mn = o(1) we obtain

∑
i<i′

EDii′ 6
8σ4η2

p

n4ς2
mn

∑
i<i′

(i− 1)(i− 2) =
2σ4η2

p n(n− 1)(n− 2)(n− 3)

3ς2
mnn

4
= o(1)
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and hence 2
∑

i<i′ EQ2
niQ

2
ni′ = 1 + o(1).

Proof of (A.21). Note that P
(

supi>1 |Qni| > ε
)
6
∑n

i=1 P
(
Q2
ni > ε2

)
and, hence the

assertion follows from the Markov inequality.
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