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There are many environments in econometrics which require nonseparable
modeling of a structural disturbance. In a nonseparable model with endogenous
regressors, key conditions are validity of instrumental variables and monotonicity
of the model in a scalar unobservable. Under these conditions the nonseparable
model is equivalent to an instrumental quantile regression model. A failure of
the key conditions, however, makes instrumental quantile regression potentially
inconsistent. This paper develops a methodology for testing the hypothesis
whether the instrumental quantile regression model is correctly specified. Our
test statistic is asymptotically normally distributed under correct specification
and consistent against any alternative model. In addition, test statistics to
justify the model simplification are established. Finite sample properties are
examined in a Monte Carlo study and an empirical illustration.
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1. Introduction

Regression models that involve instrumental variables are widely used in economics to over-
come endogeneity problems. In these models, assuming the structural disturbances to be
additively separable implies that marginal effects do not depend on unobserved charac-
teristics, which may be difficult to justify. This is why their nonseparable extension has
received a lot of attention recently. Under certain key conditions, the nonseparable model
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is equivalent to an instrumental quantile regression model. These conditions are validity
of instruments and monotonicity of the model in a scalar unobservable. If one of these
conditions is violated, however, the quantile regression representation is misspecified.
In this paper, we propose a specification test of the instrumental quantile regression model

Y = ϕ(Z, q) + U(q) where P(U(q) 6 0|W ) = q (1.1)

for each 0 < q < 1, where Y is a scalar dependent variable, Z a vector of potentially
endogenous regressors, W a vector of instruments, and U(q) an unobservable disturbance.1

This quantile regression model is equivalent to a nonseparable model (cf. Horowitz and Lee
[2007]) given by

Y = ϕ(Z, V ) (1.2)

with

(a.1) the instrumental variable W is independent of V ,

(a.2) the function ϕ is strictly monotonic increasing in the scalar disturbance V , and

(a.3) V ∼ U(0, 1).

Condition (a.3) can be assumed without loss of generality if V is continuously distributed
with positive density on its support which we assume to hold throughout the paper. The
quantile regression model (1.1) for all 0 < q < 1 is thus misspecified if in its nonseparable
version (1.2) the instrument is not valid, that is, W is not independent of V , or the function
ϕ is not monotonic in V .
Specification testing in instrumental variable models is a subject of considerable litera-
ture. In the context of nonparametric instrumental mean regression Y = g(Z) + U with
E[U |W ] = 0, tests for correct specification have been proposed by Gagliardini and Scaillet
[2007], Horowitz [2012], and Breunig [2015]. These tests are, however, not robust against
potential nonseparability of the structural disturbance. On the other hand, by considering
the nonseparable model (1.2) with conditions (a.1)–(a.3) not only a failure of the exclu-
sion restriction of the instruments might lead to a misspecified model. Indeed, as argued
by Hoderlein and Mammen [2007], in certain applications, such as consumer demand, the
monotonicity restriction (a.2) might be highly unrealistic. As such, providing a specifica-
tion test of model (1.2) together with conditions (a.1)–(a.3) seems paramount but, as far
as we know, has not yet been addressed in the literature.
Research on identification and estimation in nonparametric instrumental quantile regression
has been active in the last decade. Chesher [2003] establishes nonparametric identification
of derivatives of the unknown functions in a triangular array structure. Chernozhukov and
Hansen [2005] and Chernozhukov et al. [2007] give identification conditions and develop a
nonparametric minimum distance estimator. Sufficient conditions for local identification
are given by Chen et al. [2014]. Horowitz and Lee [2007] propose an estimator based on
Tikhonov regularization, Chen and Pouzo [2012] study penalized sieve minimum distance es-
timation, and Dunker et al. [2014] consider an iteratively regularized Gauß-Newton method.
Further, Gagliardini and Scaillet [2012] obtain asymptotic distribution results of a Tikhonov
regularized estimator. There is also a large literature on testing quantile regression models
with exogenous covariates. In this context particularly relevant is quantile regression testing
using an infinite number of quantiles for parametric functions, see Escanciano and Velasco
[2010] and, in the nonparametric context, Escanciano and Goh [2014].
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In instrumental quantile regression (1.1) for a fixed quantile 0 < q < 1, Horowitz and
Lee [2009] established a test of parametric specification of ϕ. Chen and Pouzo [2015]
consider functionals of semi/nonparametric conditional moment restrictions with possibly
nonsmooth generalized residuals. A test of monotonicity in unobservables of ϕ has been
proposed by Hoderlein et al. [2016] but requires conditional exogeneity of Z and hence,
is not related to instrumental variables methodology. Recently and independently of this
paper, Fève et al. [2016] developed a test of whether Z is independent of the nonseparable
disturbance V in the model (1.2).
Our test statistic is based on the L2–norm of the empirical conditional quantile restriction
and involves sieve methodology. The sieve approach makes the statistic easy to implement
and further, is convenient to impose additional constraints on the structural function ϕ.
As an example, we discuss a test of additivity of ϕ with respect to the vector of regressors
Z. In addition, we establish a test statistic for testing exogeneity which is robust against
nonseparability. More precisely, we establish a test of exogeneity of the regressors Z at some
quantile 0 < q < 1, that is, whether P(Y 6 ϕ(Z, q)|Z) = q. This extends the results on
nonparametric tests of exogeneity in mean regression suggested by Blundell and Horowitz
[2007] and Breunig [2015] to the quantile regression case.
It should also be noted that the test proposed in this paper is a joint test of monotonicity
and instrument validity. This is the nature of many nonparametric tests, see, for instance,
Chiappori et al. [2015] or Lewbel et al. [2015]. On the other hand, we show in this paper how
the sign of P(Y 6 ϕ(Z, q)|W ) − q can be exploited to infer on validity of the instrumental
variables. As such, in many cases it is possible to detect the cause of a rejection of our test.
We establish the asymptotic distribution of our test statistic under the null hypothesis and
its consistency against fixed alternatives. We study the power of our test against a sequence
of local alternatives. By Monte Carlo simulations we demonstrate the power properties of
our test in finite samples. As an empirical illustration, we study a nonseparable model of the
effects of class size on test scores of 4th grade students in Israel. We reject the hypothesis
of exogeneity of class size but fail to reject the instrumental variable model.
The remainder of this work is organized as follows. In Section 2, we propose a test statistic
and obtain its asymptotic distribution. We further establish consistency of our test. The
power of the test is judged by considering a sequence of local alternatives. Section 3 gives
several extensions of the previous results. In Section 4 and 5 we study the finite sample
properties of our test and give an empirical illustration. All proofs can be found in the
appendix.

2. The test statistic and its asymptotic properties

This section begins with the definition of the test statistic and states assumptions required
to obtain its asymptotic distribution under the null hypothesis. Moreover, we study power
and consistency properties of our test.

2.1. Definition of the test statistic

The quantile regression model (1.1) leads to a nonlinear operator equation, as we see in the
following. Let Φ be a Banach space endowed with the norm ‖φ‖Z,p := (E |φ(Z)|p)1/p for some
integer p > 0 and if p = ∞ then ‖φ‖Z,∞ := supz |φ(z)|. For simplicity let ‖φ‖Z := ‖φ‖Z,2.
Further, let us introduce the Hilbert space L2

W := {ψ : ‖ψ‖2W := E |ψ(W )|2 < ∞}. We
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define a nonlinear operator T : Φ→ L2
W with

T φ := E[1 {Y 6 φ(Z)}|W ] (2.1)

for any φ ∈ Φ where 1 denotes the indicator function. Thereby, model (1.1) can be rewritten
as the operator equation T ϕq = q with ϕq(·) := ϕ(·, q) for all 0 < q < 1.
In many economic applications, for instance when estimating a demand function or Engel
curves, the structural function of interest may be assumed to be smooth. This a priori
knowledge is captured by a set B ⊂ Φ which we introduce below. The set B may also contain
constraints on the function ϕq such as monotonicity, concavity/convexity or additivity (see
also Section 3.2) and can also ensure uniqueness of ϕq (see Example 2.1 below). Let us
introduce the set B(0,1) = {φ : φ(·, q) ∈ B for all q ∈ (0, 1)}. We consider the null hypothesis

H0 : there exists a function ϕ ∈ B(0,1) such that T ϕq = q for all q ∈ (0, 1). (2.2)

The alternative is that there exists no function ϕ ∈ B(0,1) solving T ϕq = q for all q ∈ (0, 1).
We construct in the following a test statistic based on the L2–distance. Throughout the
paper, we assume that an independent and identically distributed n-sample of (Y,Z,W )
is available. Let {fj}j>1 be a sequence of approximating functions in L2

W . Then, for any

integer k > 1 we denote fk(·) = (f1(·), . . . , fk(·))t and Wk =
(
fk(W1), . . . , fk(Wn)

)t
which

is a n× k matrix. A series least square estimator of E[1 {Y 6 φ(Z)}− q|W = ·] then writes

fln(·)t(Wt
lnWln)−

n∑
i=1

(1 {Yi 6 φ(Zi)} − q)fln(Wi)

where (·)− denotes a generalized inverse. Further, we define the sieve least square estimator
of ϕq by

ϕ̂qn ∈ argmin
φ∈Bkn

( n∑
i=1

(1 {Yi 6 φ(Zi)}−q)fln(Wi)
)t

(Wt
lnWln)−

n∑
i=1

(1 {Yi 6 φ(Zi)}−q)fln(Wi)

(2.3)

where Bkn is a kn–dimensional sieve space that becomes dense in B as the sample size n
tends to infinity. If B contains additional constraints then these are imposed in Bkn on the
finite dimensional functions. Here, kn and ln grow with sample size n. Clearly, kn 6 ln for
each n is required and in our simulations we choose ln = Ckn for some constant C > 1 (see
also Chen and Christensen [2015] in case of nonparametric instrumental mean regression).
The estimator ϕ̂qn is a simplified version of the penalized sieve minimum distance estimator
suggested by Chen and Pouzo [2012].
The test statistic is then given by

Sn =

∫ 1

0

( n∑
i=1

(1 {Yi 6 ϕ̂qn(Zi)}−q)fmn(Wi)
)t

(Wt
mn

Wmn)−
n∑
i=1

(1 {Yi 6 ϕ̂qn(Zi)}−q)fmn(Wi)dq

(2.4)

where mn grows with sample size n. As the test is one sided, we reject the null hypothesis
at level α when the standardized version of Sn, namely 3

√
5/mn

(
Sn−mn/6

)
, is larger than
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the (1− α)–quantile of N (0, 1). The asymptotic distribution of Sn is derived below under
mild restrictions on the dimension parameters kn, ln, and mn. We require that the number
of unconditional moment restrictions determined by mn is asymptotically larger than the
dimension of the sieve space Bkn . This corresponds to the test of overidentifying restrictions
in parametric models. In contrast to the parametric setting, however, also the number of
unconditional moment restrictions used to construct the estimator (determined by ln) must
be asymptotically smaller than the number of moment restrictions used for the test statistic.
This ensures that the estimation error in the test statistic becomes asymptotically negligible
as we see below.
Our test statistic builds on the nonparametric specification test in instrumental mean regres-
sion suggested by Breunig [2015]. Testing in instrumental quantile regression, on the other
hand, requires a different methodology. First, the test statistic is a discontinuous func-
tion of the unknown structural effect ϕq. Second, instrumental quantile regression leads
to a nonlinear inverse problem and hence deriving asymptotic results is more challenging.
Third, to verify the conditional moment restrictions for all quantiles we need to integrate
over them. In the appendix, we show that the mapping q 7→ ϕq is continuous under mild
assumptions. This justifies the use of our L2–type rather than a sup norm statistic.

2.2. Assumptions and notation.

In order to obtain our asymptotic result we state the following assumptions. Our first
assumption gathers conditions which we require for the basis functions {fj}j>1. In the
following, the supports Z of Z andW of W are assumed to be bounded (see also Assumption
4). The probability density function (p.d.f.) of W , denoted by pW , is assumed to be
uniformly bounded from above and away from zero.

Assumption 1. (i) There exists a constant C > 0 and a sequence of positive integers
(mn)n>1 satisfying supw∈W ‖fmn(w)‖2 6 Cmn. (ii) The smallest eigenvalue of the matrix
E[fm(W )fm(W )t] is bounded away from zero uniformly in m.

Assumption 1 (i) holds for sufficiently large C if {fj}j>1 are trigonometric basis functions, B-
splines, or wavelets. Assumption 1 (ii) is satisfied if the marginal density of W is uniformly
bounded away from zero on W and fmn forms a vector of orthonormal basis functions. In

the following, for any φ ∈ B(0,1) we denote φq(·) := φ(·, q) for all 0 < q < 1. In the following,
we denote the Fréchet derivative of T at ϕq by

Tqφ := E
[
pY |Z,W

(
ϕ(Z, q), Z,W

)
φ(Z)

∣∣W ]
where pY |Z,W denotes the density of Y conditional on (Z,W ). In the following, we denote

9φ9Z,p =
( ∫ 1

0 ‖φ(·, q)‖pZ,pdq
)1/p

and 9ψ9W =
( ∫ 1

0 ‖ψ(·, q)‖2Wdq
)1/2

for functions φ(·, q) ∈
Φ and ψ(·, q) ∈ L2

W for all q ∈ (0, 1).

Assumption 2. (i) If 9T φ − T ϕ92
W = 0 for some function φ ∈ B(0,1) then it holds

9φ− ϕ92
Z,p = 0. (ii) There exists some constant 0 < η < 1 such that for all 0 < q < 1 and

all functions φ ∈ {φ ∈ B : ‖φ− ϕq‖Z,p 6 ε} for some ε > 0 it holds

‖T φ− T ϕq − Tq(φ− ϕq)‖W 6 η‖Tq(φ− ϕq)‖W . (2.5)

Assumption 2 (i) ensures identification of ϕq for almost all 0 < q < 1 on the set B which
we introduce below. Assumption 2 (ii) specifies an upper bound on the Taylor remainder
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of T in a small neighborhood around ϕq. It is also known as the tangential cone condition
and frequently used in the analysis of nonlinear operator equations (cf. Hanke et al. [1995]
or Dunker et al. [2014] in case of instrumental variable estimation). We provide sufficient
conditions for the tangential cone condition in Example 2.1 below and refer to Chen et al.
[2014] for further discussions.

Assumption 3. There exists a sequence (rn)n>1 with rn = o(1) such that for constants
C > 0 and κ ∈ (0, 1] it holds

max
16j6mn

E
[ ∫ 1

0
sup
φ∈Bn

∣∣1{Y 6 φ(Z, q)} − 1{Y 6 ϕ(Z, q)}
∣∣2dq f2j (W )

]
6 Cr2κn (2.6)

where Bn := {φ ∈ B(0,1) : 9φ− ϕ92
Z,p 6 r

2
n}.

Assumption 3 states that the function ϕq 7→ (1{Y 6 ϕ(Z, q)} − q)fj(W ), 1 6 j 6 mn,
is locally uniformly L2

W continuous for almost all 0 < q < 1. This condition has also
been exploited by Chen et al. [2003] (Theorem 3), Chen [2007] (Lemma 4.2 (i)) or Chen
and Pouzo [2012] (Remark c.1). Example 2.2 below gives primitive conditions under which
Assumption 3 holds true.
Let Z ⊂ Rdz and for any vector of nonnegative integers k = (k1, . . . , kdz) define |k| =∑dz

j=1 kj and Dk = δ|k|/(δzk11 . . . δz
kdz
dz

). For some integer p > 0 we define the norms

‖φ‖α,p =
( ∑
|k|6α+α0

∫
Z

∣∣Dkφ(z)
∣∣pdz)1/p, ‖φ‖α,∞ = max

|k|6α
sup
z∈Z

∣∣Dkφ(z)
∣∣

where α and α0 are positive integers. We denote the Sobolev spaces associated with the
norm ‖ · ‖α,p by

Wα,p := {φ : Z → R : ‖φ‖α,p <∞}. (2.7)

For some constant ρ > 0, define B as the Sobolev ellipsoid of radius ρ given by

B := B(α) := {φ ∈Wα,p : ‖φ‖α,p 6 ρ}. (2.8)

While the set of structural functions B is compact under the norm ‖ · ‖α,∞ (see Lemma A.2
of Santos [2012]) it is not compact under the norm ‖ · ‖Z (we also refer to Chen and Pouzo
[2012] for a further discussion). On the other hand, our sieve space Bkn used to approximate
B is compact under ‖ · ‖Z and thus, penalization is not necessary for consistent estimation
(see also Chen and Pouzo [2012]). Also additional constraints such as monotonicity can be
imposed by B = {φ ∈Wα,p : ‖φ‖α,p 6 ρ, infz∈Z φ

′(z) > 0} for scalar z. Such a monoton-
icty constraint does not necessarily lead to faster rates of convergence, in contrast to an
additivity restriction on ϕq. Consequently, we do not treat shape restrictions like mono-
tonicty explicitly but only discuss a test of additivity in Section 3.2. In this context, we
also refer to Chetverikov and Wilhelm [2015] for using shape restriction for sieve estimation
in instrumental mean regression. The following assumption gathers regularity conditions
imposed on the structural functions ϕ and the supports Z and W.

Assumption 4. (i) Let α0 > dz/p and α > dz/κ. (ii) Z is bounded, convex and satisfies a
uniform cone property. (iii) W is bounded. (iv) The marginal density of W, denoted by pW ,
is bounded from above and uniformly bounded away from zero on W. (v) pY |Z,W (·, Z,W ) is
bounded from above.
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Assumption 4 (i) requires α to be large if (2.6) holds only for small κ > 0 or the dimension dz
is large. Assumption 4 (ii) imposes a weak regularity condition on the shape of Z. For the
uniform cone property see, for instance, Paragraph 4.4 in Adams and Fournier [2003]. This
property was also used by Santos [2012]. Assumption 4 (v) ensures that ‖Tqφ‖W 6 C‖φ‖Z
for all φ ∈ L2

Z and some constant C > 0.

Example 2.1 (Primitive Conditions for Assumption 2). Let Φ coincide with the Hilbert
space L2

Z := {φ : ‖φ‖Z <∞}. If for any 0 < q < 1 the operator Tq is compact then there ex-
ists an orthonormal basis in L2

Z denoted by {ej}j>1 satisfying ‖Tqφ‖2W =
∑∞

j=1 s
2
qj E[φ(Z)ej(Z)]2

where (sqj)j>1 are the singular values of Tq. If

B ⊂ Bsource,q :=

φ ∈ L2
Z :

∞∑
j=1

s−2qj E[(φ(Z)− ϕ(Z, q))ej(Z)]2 < c0


for some constant c0 > 0 then, under mild assumptions on the joint distribution of (Y, Z,W ),
the function ϕq is identified on B (cf. Theorem 6 of Chen et al. [2014]). A similar restriction
was also imposed by Horowitz and Lee [2007]. If B ⊂

⋂
q∈(0,1) Bsource,q then Assumption 2

(i) holds true. Under further assumptions, imposing bounds on the generalized Fourier
coefficients is equivalent to imposing smoothness restrictions. To illustrate this relation let
Z be a scalar uniformly distributed random variable and assume sqj = j−ζ , j > 1, for
some constant ζ > 0. In this case, if {ej}j>1 are the usual trigonometric basis functions
then Bsource,q coincides with the Sobolev space of ζ–times differential functions with periodic
boundary conditions, while if s2qj = exp(−j2ζ), j > 1 and ζ > 1, Bsource,q contains only
analytic functions (see also Kress [1989]). In this sense, Bsource,q links the smoothness of
φ − ϕq to the degree of ill-posedness determined by the degree of decay of (sqj)j>1, which
is also known as a so-called source condition (cf. Chen and Reiß [2011] or Dunker et al.
[2014] for a further discussion).
Under the singular value decomposition of Tq it is also possible to provide primitive condi-
tions for the tangential cone condition (2.5). Assume that the conditional p.d.f. of Y given
(Z,W ), denoted by pY |Z,W , is continuously differentiable with |∂pY |Z,W (·, Z,W )/∂y| 6 c1
and the conditional p.d.f. of Z given W satisfies pZ|W (·,W ) 6 c2pZ(·), for some constants
c1, c2 > 0. Then by Theorem 6 of Chen et al. [2014] it holds

‖T φ− T ϕq − Tq(φ− ϕq)‖W 6 c1 c2 ‖φ− ϕq‖2Z . (2.9)

We further obtain for all φ ∈ Bsource,q by making use of the Cauchy-Schwarz inequality

‖φ−ϕq‖2Z =
∞∑
j=1

sqj
sqj

E[(φ(Z)− ϕ(Z, q))ej(Z)]2

6
( ∞∑
j=1

s−2qj E[(φ(Z)− ϕ(Z, q))ej(Z)]2
)1/2( ∞∑

j=1

s2qj E[(φ(Z)− ϕ(Z, q))ej(Z)]2
)1/2

6 c1/20 ‖Tq(φ− ϕq)‖W .

Consequently, the tangential cone condition (2.5) is satisfied if we assume c
1/2
0 c1 c2 < 1.

We also note that for our test of exogeneity in Section (3.1) only the weaker condition (2.9)
is required. �
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Example 2.2 (Primitive Conditions for Assumption 3). Let FY |ZW denote the cumulative
distribution function of Y given (Z,W ) and assume that it is Lipschitz continuous with
constant CL > 0, that is, |FY |ZW (y) − FY |ZW (y′)| 6 CL|y − y′| for all (y, y′). Due to
Assumption 4 the Sobolev space Wα,p can be embedded in Wα,∞ (cf. Theorem 6 of Adams
and Fournier [2003]). In particular, the supremum norm is bounded on B and moreover,
Assumption 3 holds true. Indeed,

∫ 1
0 ‖φq−ϕq‖

2
∞dq 6 r

2
n implies ‖φq−ϕq‖∞ 6 c rn for almost

all 0 < q < 1 and some constant c > 0. Hence, ϕ(Z, q)− c rn 6 φ(Z, q) 6 ϕ(Z, q) + c rn for
almost all 0 < q < 1 and following Chen et al. [2003] (page 1599 – 1600) we observe

E
[ ∫ 1

0
max
φ∈Bn

(
1{Y 6 φ(Z, q)} − 1{Y 6 ϕ(Z, q)}

)2
dq
∣∣∣W]

6
∫ 1

0
E
[
1

{
Y 6 ϕ(Z, q) + c rn

}
− 1

{
Y 6 ϕ(Z, q)− c rn

}∣∣∣W]dq
=

∫ 1

0
E
[
FY |ZW

(
ϕ(Z, q) + c rn

)
− FY |ZW

(
ϕ(Z, q)− c rn

)∣∣∣W]dq
6CL c rn

which implies Assumption 3 with κ = 1/2. �

Remark 2.1 (Local Overidentification). The tangential cone condition together with the
assumption of injectivity of the Fréchet derivative Tq implies local identification in nonpara-
metric instrumental quantile regression (see Dunker et al. [2014] or Chen et al. [2014]). In
this example, we discuss local overidentification restrictions in nonparameteric instrumental
quantile regression. As Chen and Santos [2015] point out in their Example 5.2, the range
of the Fréchet derivative Tq, is given by

Rq =
{
ψ ∈ L2

W : ψ = Tqφ for some φ ∈ L2
Z

}
.

Local overidentification corresponds to the case where the closure of the range Rq is a strict
subset of L2

W . Under the null hypothesis, the class of structural functions ϕ is restricted to
belong to an ellipsoid B and thus, consider for each q:

Rq(B) =
{
ψ ∈ L2

W : ψ = Tqφ for some φ ∈ B
}
.

Consequently, under mild restrictions on the ellipsoid B local overidentification can be en-
sured and the class of functions in the alternative model is not empty. �

The next result formalizes the discussion of the previous remark by providing minimal
regularity conditions on the function space B to ensure overidentification.

Proposition 2.1. Let Φ coincide with the Hilbert space L2
Z . For any 0 < q < 1, assume

that the Fréchet derivative Tq is compact with singular values having either a polynomial or
exponential decay with eigenfunctions ej, j > 1. For some δ > 0 assume that B ⊂ Bδ :={
φ ∈ L2

Z :
∑∞

j=1 j
2δ E[φ(Z)ej(Z)]2 < C

}
for some constant C > 0. Then we have local

identification, i.e., the closure of Rq(B) is a strict subset of L2
W .

Note that the restriction on the generalized Fourier coefficients for the functions in Bδ
is not very restrictive for small δ > 0. In the setting of Example 2.1, where {ej}j>1
are trigonometric basis functions and Z ∼ U(0, 1), the function class Bδ contains δ–times
differential functions. In particular, we emphasize that the result in Proposition 2.1 holds
for any δ > 0 and thus, B can be arbitrarily close to the compact set of functions

{
φ ∈ L2

Z :
‖φ‖2Z < C

}
, which follows by employing a spectral decomposition of Tq.
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Notation For any φ ∈ B we introduce Πknφ ∈ Bkn satisfying ‖Πknφ − φ‖Z,p = o(1).
Further, we define

ωn = max
(
n−1ln, max

φ∈Bkn

∑
j>ln

E[(T φ(W )− q)fj(W )]2,9T·(Πknϕ− ϕ) 92
W

)
.

The rate ωn captures the variance and bias part for estimating T φ for a fixed function φ
and also contains the bias for approximating the structural function ϕ in the weak norm
induced by the Fréchet derivative of T . Following Chen and Pouzo [2012] we introduce the
sieve measure of local ill-posedness by

τkn := max
φ∈Akn

( 9φ− ϕ92
Z,p

9T·(φ− ϕ)92
W

)
where Akn =

{
φ ∈ B(0,1)kn

: 9T·(φ− ϕ)92
W > 0

}
. We write an ∼ bn when there exist con-

stants c, c′ > 0 such that cbn 6 an 6 c′bn for sufficiently large n.

2.3. Asymptotic distribution under the null hypothesis

The following theorem establishes asymptotic normality of the test statistic Sn after stan-
dardization under the null hypothesis H0.

Theorem 2.2. Let Assumptions 1–4 be satisfied. Assume that

m−1n = o(1), mn = o(n1/2) (2.10)

and in addition

nωn = o(
√
mn) and 9Πknϕ− ϕ 92

Z,p +τknωn = o
(
m−(1+ε)/κn

)
(2.11)

for some ε > 0. Then we have under H0

3
√

5/mn

(
Sn −mn/6

) d→ N (0, 1).

To motivate the constants in the sieve mean and variance, respectively, we observe∫ 1

0
E[(1{Y 6 ϕ(Z, q)} − q)2|W ]dq =

∫ 1

0
q(1− q)dq = 1/6

and ∫ 1

0

(
E[(1 {Y 6 ϕ(Z, q)} − q)(1

{
Y 6 ϕ(Z, q′)

}
− q′)|W ]

)2
d(q, q′)

= 2

∫ 1

0
(min(q, q′) − qq′)2d(q, q′) = (3

√
5)−2,

see also the proof of Lemma A.3. The required rate imposed in (2.10) on mn is milder than
the rate requirement mn = o(n1/3) imposed by Breunig [2015] in case of nonparametric
instrumental mean regression. This is due to the fact that in the latter case we do not
have a lower bound for the sieve standard deviation in general, while in case of quantile
regression the sieve standard deviation is

√
mn within a positive constant. This can be

9



exploited to weaken rate restrictions on mn. Further, note that restriction (2.11) implies
kn = o(

√
mn) (by using that ln 6 kn). This requirement essentially determines the degree

of overidentification required for inference.

Note that the rate restriction τknωn = o
(
m
−(1+ε)/κ
n

)
imposed in condition (2.11) implies that

the dimension parameter mn dominates the effect of estimation of the structural function.
Consequently, the asymptotic behavior of our test statistic is not affect by the estimation
of ϕ, regardless of the underlying degree of ill-posedness. Note that the rate restriction in
condition (2.11) can be ensured by choosing kn relative to the decay of the sieve measure
of local ill-posedness, which is described in more detail in the Example 2.3 below.
In the following, we want to illustrate that condition (2.11) is satisfied under common
smoothness restrictions on ϕ and mapping requirements of the Fréchet derivative Tq.

Remark 2.2. Consider the Hilbert space case Φ = L2
Z and let {ej}j>1 be an orthonormal

basis in L2
Z . In this case, Πknφ =

∑kn
j=1 E[φ(Z)ej(Z)]ej. Let us assume the following two

conditions.

(i) Sieve Approximation Error: ‖Πknφ− φ‖Z = O(k
−α/dz
n ) for all φ ∈ B.

(ii) Link condition:
∫ 1
0 ‖Tq(Πknφ − φ)‖2Wdq 6

∑
j>1 υj E[(Πknφ − φ)(Z)ej(Z)]2 for all

φ ∈ B and some positive nonincreasing sequence (υj)j>1.

If the p.d.f. pZ of Z ∈ [0, 1]dz is bounded then it is well known that the sieve approximation
error condition holds for splines, wavelets, and Fourier series bases. Due to Assumption
4 (v) the link condition is always satisfied with υj = 1 for all j > 1. The link condition
implies an upper bound for the sieve measure of ill-posedness; that is, τkn 6 Cυkn for some
constant C > 0 and all n > 1 (cf. Lemma B.2 of Chen and Pouzo [2012]). Consequently,
the first part of condition (2.11) simplifies to

max
(
ln, n l

−2β/dw
n , nυknk

−2α/dz
n

)
= o(
√
mn)

if {T φ : φ ∈ Bkn} belongs to a Hölder space with Hölder parameter β. In addition, in the
setting of Example 2.2, the second part of condition (2.11) simplifies to

m1+ε
n max

(
n−1ln, l

−2β/dw
n , k−2α/dzn

)
= o(1)

for some ε > 0. �

In the following example, we illustrate different mapping properties of the operator Tq which
are usually studied in the literature.

Example 2.3. Consider the Hilbert space setting of Remark 2.2 with conditions (i) and (ii).
In addition assume that the reverse link condition

∫ 1
0 ‖Tqφ‖

2
Wdq > c

∑
j>1 υj E[φ(Z)ej(Z)]2

for φ ∈ B and some constant c > 0 is satisfied. In the setting of Example 2.1, we have∫ 1
0 s

2
qjdq > υj for all j > 1 implying that Tq is nonsingular for almost all 0 < q < 1 (since

any countable union of null sets is null). For simplicity, let Z and W be scalars. Further,

let max
(
n−1ln, l

−2β
n

)
∼ n−1kn and kn ∼ nχ for some constant χ > 0 which is specified in

the following two cases.

(i) Mildly ill-posed case: If υkn ∼ k−2ζn for some ζ > 0 then in order for (2.11) to hold
we require mn ∼ nι with 0 < ι < 1/3 and

(1− ι/2)/(2α+ 2ζ) < χ < ι/2.

10



Further,
∫ 1
0 ‖Πknϕq − ϕq‖2Zdq + τknωn = O(k−2αn + k2ζ+1

n n−1) which is o(m
−2/κ
n ) if

ι/(ακ) < χ < (1− 2ι/κ)/(2ζ + 1). Thus, condition (2.11) is satisfied if

max
(

(1− ι/2)/(2α+ 2ζ), ι/(ακ)
)
< χ < min

(
ι/2, (1− 2ι/κ)/(2ζ + 1)

)
.

(ii) Severely ill-posed case: If υkn ∼ exp
(
− k2ζn

)
for some ζ > 0 then

∫ 1
0 ‖Πknϕq −

ϕq‖2Zdq+ τknωn = O(k−2αn + exp(k2ζn )knn
−1). Thereby, condition (2.11) is satisfied if,

for example, mn = o
(
(log n)ακ/ζ

)
and kn ∼ (log n)1/ζ .

In both situations we conclude that the dimension parameter mn is required to be larger than
the dimension kn of the sieve space for n sufficiently large. Roughly speaking we require more
moment restrictions implied by the instrument than parameters we want to estimate. This
corresponds to the test of overidentification in the parametric framework. �

In contrast to a test integrated over all quantiles, one might be interested to check model
(1.1) for one specific quantile. In this case, we consider the test statistic

Sn(q) =
( n∑
i=1

(1 {Yi 6 ϕ̂qn(Zi)}−q)fmn(Wi)
)t

(Wt
mn

Wmn)−
n∑
i=1

(1 {Yi 6 ϕ̂qn(Zi)}−q)fmn(Wi)

(2.12)

If Sn(q) becomes too large then we reject the null hypothesis H0. The derivation of the
asymptotic behavior of Sn(q) is similar as in Theorem 2.2. Indeed, only the Lebesgue
measure over (0, 1) has to be replaced by the Dirac measure which has its mass at the
quantile of interest.

Corollary 2.3. Let Assumptions 1 and 4 be satisfied. For a fixed quantile q ∈ (0, 1), let
Assumptions 2, 3, and conditions (2.10) and (2.11) hold. If there exists a function ϕq ∈ B
with T ϕq = q then

(2mn)−1/2
( 1

q(1− q)
Sn(q)−mn

)
d→ N (0, 1).

In addition, one might be interested in certain regions of quantile functions. Let µ denote
any measure on (0, 1). Again, the next result is a direct implication of Theorem 2.2 and
hence we omit its proof.

Corollary 2.4. Let Assumptions 1 and 4 be satisfied. For all q in the support of µ, let
Assumptions 2, 3, and conditions (2.10) and (2.11) hold. If there exists a function ϕ ∈ B
with

∫
|T ϕq − q|dµ(q) = 0 then(

2mn

∫ 1

0
(min(q, q′)−qq′)2dµ(q)dµ(q′)

)−1/2(∫ 1

0
Sn(q)dµ(q)−mn

∫ 1

0
q(1−q)dµ(q)

)
d→ N (0, 1).

As mentioned in the introduction, our test is a joint test of instrument validity and mono-
tonicity of ϕ in its second entry. The following remark illustrates how the test statistic Sn(q)
integrated over a subset of (0, 1) can be useful to detect which kind of deviation exists.
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Remark 2.3 (Detecting the Kind of Deviation). Suppose that the structural function is
strictly monotonically increasing in its second entry for values q ∈ (0, q′) given some q′ ∈
(0, 1) (can be checked using Corollary 2.4). Further, let q 7→ ϕ(·, q) be either nonincreasing
or decreasing on (q′, q′′). This can be assured by letting q′′ close to q′ and assuming that ϕ
does not oscillate for q > q′. If W is a valid instrument, employing model equation (1.2)
and V ∼ U(0, 1) yields

P(Y 6 ϕ(Z, q)|W ) = P(ϕ(Z, V ) 6 ϕ(Z, q)|W )

6 P(V 6 q|W )

= q

for all q 6 q′′ and q′′ sufficiently close to q′. The last inequality holds regardless whether
the function q 7→ ϕ(·, q) is strictly monotone or not. Consequently, if infw∈W P(Y 6
ϕ(Z, q)|W = w) > q for some q ∈ (q′, q′′) we may conclude that W is not a valid in-
strument. The analysis of a one sided test based on this inequality is beyond the scope of
this paper. On the other hand, we can check the kind of deviation by using the estimator
infw∈W fmn(w)t

[
n−1

∑n
i=1(1 {Yi 6 ϕ̂qn(Zi)} − q)fmn(Wi)

]
. Further, confidence statements

can be achieved by using resampling methods. �

Remark 2.4 (Implementation of the Test Statistic). This remark provides some details
on the implementation of our test statistic. First, replace the (0, 1)–integral by a sum of
uniformly distributed random variables. Second, for any integer mn 6 n1/2 estimate the
structural effect ϕq given in (2.3) for each grid point q, each paramter kn with k2n 6 mn and
ln = 2kn. Third, compute the standardized test statistic Sn such that it is maximized w.r.t.
mn and minimized w.r.t. kn. That is, we choose kn to provide a good model fit and mn to
increase the power of the test. The choice of the dimension parameters capture essential rate
requirements imposed to achieve asymptotic normality and is also motivated by simulation
results. This leads to a so-called minimum-maximum principle, see also Subsection 4.1 for
more details. �

2.4. Consistency against a fixed alternative

Let us first establish consistency when H0 does not hold, that is, there exists no function
ϕ belonging to B(0,1) which solves T ϕq = q for all 0 < q < 1. The following proposition
shows that our test has the ability to reject a false null hypothesis with probability 1 as the
sample size grows to infinity. In the following analysis of the asymptotic power of our testing
procedure we let ϕq = argminφ∈B ‖T φ− q‖W . So if H0 is false then

∫ 1
0 ‖T ϕq − q‖

2
Wdq > 0

since pW is uniformly bounded from below.

Proposition 2.5. Assume that H0 does not hold. Let Assumptions 1–4 be satisfied. Con-
sider a sequence (γn)n>1 satisfying γn = o(n/

√
mn). If conditions (2.10) and (2.11) hold

we have

P
(

3
√

5/mn

(
Sn −mn/6

)
> γn

)
= 1 + o(1).

2.5. Limiting behavior under local alternatives

In the following, we study the power of the test, that is, the probability to reject a false
hypothesis against a sequence of linear local alternatives that tends to zero as the sample
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size tends to infinity. We proceed similarly as Ait-Sahalia et al. [2001] (Section 3.3). More
precisely, let (ϕqn)n>1 be a sequence of (nonstochastic) functions satisfying n

∫ 1
0 ‖T ϕqn −

T ϕq‖2Wdq = o(
√
mn) where ϕq = argminφ∈B ‖T φ − q‖W . Then we consider alternative

models defined by ϕqn with∫ 1

0

∥∥T ϕqn − q − δnξq∥∥2Wdq = o(δ2n) where δ2n =
√
mn/(3

√
5n). (2.13)

Here, ξq ∈ L2
W is a function satisfying

∫ 1
0 ‖ξq‖

2
Wdq > 0. The next result establishes asymp-

totic normality for the standardized test statistic Sn.

Proposition 2.6. Let Assumptions 1–4 be satisfied. Assume that (ϕqn)n>1 satisfies (2.13)

and n
∫ 1
0 ‖T ϕqn − T ϕq‖

2
Wdq = o(

√
mn). If conditions (2.10) and (2.11) hold we have

3
√

5/mn

(
Sn −mn/6

) d→ N
( ∞∑
j=1

∫ 1

0
E[ξq(W )fj(W )]2dq, 1

)
.

From Proposition 2.6 we see that our test can detect local linear alternatives at the rate

δn. If {fj}j>1 forms an orthonormal basis in L2
W then δn coincides with m

1/4
n n−1/2 within

a constant. Hence, our test has the same power against local linear alternatives as the test
of Hong and White [1995] who consider parametric specification testing.

2.6. Inference based on bootstrap

Nonparametric tests that rely on the asymptotic normal approximation may perform poorly
in finite samples. An alternative approach is to use bootstrap approximation. It is known
that bootstrap based procedures could approximate finite sample distributions more accu-
rately. In the following, we propose a bootstrap version of our test statistic Sn.
The bootstrap procedure is based on a sequence of independent and identically distributed
random variables εi, 1 6 i 6 n, drawn independently of the original data (Yi, Xi,Wi),
1 6 i 6 n. Following Chen and Pouzo [2015] we then consider the bootstrap residual
function

εi
(
1 {Yi 6 ϕq(Zi)} − q

)
.

Let ϕ̂∗qn be the bootstrap version of the sieve least squares estimator (2.3), which is computed
in the same way but where only

(
1 {Yi 6 φ(Zi)}− q

)
is replaced by εi

(
1 {Yi 6 φ(Zi)}− q

)
.

The bootstrap version S∗n of our test statistic Sn given in (2.4) builds on ϕ̂∗qn. More precisely,
S∗n is computed as the test statistic Sn but where only

(
1 {Yi 6 ϕ̂qn(Zi)} − q

)
is replaced

by εi
(
1 {Yi 6 ϕ̂∗qn(Zi)} − q

)
.

Assumption 5. Let (εi)i>1 be an independent and identically distributed sequence of ran-
dom variables drawn independently of (Y,Z,W ) such that E[ε] = 1, Var(ε) =: σ2ε ∈ (0,∞)
and E[|ε− 1|4] <∞

Assumption 5 corresponds to Assumption Boot.1 of Chen and Pouzo [2015]. We slightly
strengthen their assumption by imposing a fourth moment restriction, which we require to
derive asymptotic validity of the bootstrap procedure. Due to the bootstrap innovations
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εi the constants in the sieve mean and sieve standard deviation change. For the bootstrap
test S∗n we obtain the sieve mean constant∫ 1

0
E[ε2(1{Y 6 ϕ(Z, q)} − q)2|W ]dq = (σ2ε + 1)/6

and the sieve standard deviation constant(∫ 1

0

(
E[ε2(1 {Y 6 ϕ(Z, q)}−q)(1

{
Y 6 ϕ(Z, q′)

}
−q′)|W ]

)2
d(q, q′)

)1/2
= (σ2ε+1)/(3

√
5).

Chen and Pouzo [2015] show that the bootstrap version of the sieve estimator ϕ̂∗qn converges
at the same rate as ϕ̂qn. Thus, following line by line the proof of Theorem 2.2 and using
the imposed restrictions on the weights εi we obtain the following result.

Corollary 2.7. Let the assumptions of Theorem 2.7 be satisfied. Under Assumption 5 and
null hypothesis H0 we have

3
√

5/(mn(σ2ε + 1))
(
S∗n −mn(σ2ε + 1)/6

) d→ N (0, 1).

It should be emphasized the asymptotic validity of the bootstrap procedure is, in particular,
due to the rate condition (2.11), which ensures that the asymptotic distribution of S∗n is not
affected by the estimation of the structural function. The next result establishes consitency
of the bootstrap test against fixed alternatives.

Corollary 2.8. Assume that H0 does not hold and that the assumptions of Proposition 2.5
are satisfied. Under Assumption 5 we have

P
(

3
√

5/(mn(σ2ε + 1))
(
S∗n −mn(σ2ε + 1)/6

)
> γn

)
= 1 + o(1).

3. Extensions

As we see in this section, our testing procedure can potentially be applied to a much
wider range of situations. We now discuss corollaries that generalize the previous results in
different ways. For the following analysis we focus on a fixed quantile q ∈ (0, 1).

3.1. Testing exogeneity

Falsely assuming exogeneity of the regressors leads to inconsistent estimators while on the
other hand treating exogenous regressors as if they were endogenous can lower rate of
convergence dramatically. In this subsection, we develop a nonparametric test of exogeneity
that is robust against possible nonseparability of unobservables. The test statistic is similar
to the statistic Sn(q) given in (2.12) but where ϕ̂qn is replaced by an estimator of the
conditional quantile function.
In contrast to the previous section, we assume here that there exists a unique function
ϕq satisfying Y = ϕq(Z) + Uq with P(Uq 6 0|W ) = q and for some q ∈ (0, 1). The
relation between Z and W is thus restricted through this maintained hypothesis. Under
the maintained hypothesis, we propose a test whether the vector of regressors Z is exogenous
at a quantile q ∈ (0, 1), that is,

He
0 : P(Uq 6 0|Z) = q.

14



In the following, we denote the conditional quantile function by ϕe
q which satisfies P(Y 6

ϕe
q(Z)|Z) = q. The null hypothesis He

0 is satisfied if and only if the structural function ϕq
coincides with the conditional quantile function ϕe

q. Further, under nonsingularity of the
operator T , hypothesis He

0 is equivalent to

T ϕe
q = q. (3.1)

Our test of exogeneity, which we propose below, is based on this equation or equivalently on
P(Y 6 ϕe

q(Z)|W ) = q. More precisely, to test exogeneity we replace in the statistic Sn(q)
given in (2.12) the estimator of ϕq by an estimator of ϕe

q.
In the following, ϕ̂e

qn denotes an estimator for the conditional quantile function ϕe
q. For

instance, an estimator of ϕe
q is given by

ϕ̂e
qn = argmin

φ∈Bkn

n∑
i=1

%q
(
Yi − φ(Zi)

)
(3.2)

where %q(u) = |u| − (2q − 1)u is the check function and here, Bkn =
{
φ ∈ B : φ(·) =∑kn

j=1 βjej(·)
}

. For B-spline basis functions and an additional penalty this estimator was
proposed by Koenker et al. [1994]. In the following, let pZ and pZ|W denote the marginal
density of Z and the conditional density of Z given W , respectively.

Assumption 6. (i) There exists a function ϕq ∈ B such that T ϕq = q. (ii) pY |Z,W (·, Z,W )
is continuously differentiable, |∂pY |Z,W (·, Z,W )/∂y| 6 C and pZ|W (·,W ) 6 CpZ(·) for
some constant C > 0. (iii) There exists a sequence (Re

n)n>1 with Re
n = o(1) such that

‖ϕ̂e
qn − ϕeq‖2Z = Op(R

e
n).

Assumption 6 (i) formalizes the maintained hypothesis of a correctly specified nonpara-
metric instrumental quantile moment equation. Section 2 provides a test for it. Due to
Assumption 6 (ii) we do not require Assumption 2 (ii) but can rather rely on an upper
bound of the Taylor reminder of T obtained by Chen et al. [2014]. In this sense, the test
of exogeneity presented below requires weaker restrictions on the local curvature of T than
in case of specification testing. Assumption 6 specifies a rate requirement for the L2

Z dis-
tance of the estimator ϕ̂e

qn. For instance, under He
0 , Assumption 6 (iii) is satisfied with

Re
n = kn/n + k−2rn when ϕ̂e

qn is given by the estimator (3.2) with the B-splines basis func-
tions {ej}j>1 and Z is scalar, see He and Shi [1994]. The same rate is obtained by Horowitz
and Lee [2005] in the case of multivariate Z in an additive quantile regression model.
For a test of the null hypothesis He

0 we replace in the definition of Sn(q) given in (2.12) the
estimator ϕ̂qn by ϕ̂e

qn. That is,

Se
n(q) =

( n∑
i=1

(1{Yi 6 ϕ̂e
qn(Zi)}−q)fmn(Wi)

)t
(Wt

mn
Wmn)−

n∑
i=1

(1{Yi 6 ϕ̂e
qn(Zi)}−q)fmn(Wi)

We reject the hypothesis He
0 if Se

n(q) becomes too large. The next result establishes asymp-
totic normality of our test statistic Se

n(q) under the null hypothesis.

Corollary 3.1. Let Assumptions 1, 2 (i), 3, 4 and 6 hold. Let mn satisfy condition (2.10).
Consider the estimator ϕ̂e

qn given in (3.2) where kn satisfies

nRe
n = o(

√
mn) and Re

n = o
(
m−(1+ε)/κn

)
(3.3)
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for some ε > 0. Then we have under He
0(

2mn

)−1/2( 1

q(1− q)
Se
n(q)−mn

)
d→ N (0, 1).

Example 3.1. Let us illustrate when condition (3.3) holds true. Let mn ∼ nι with 0 < ι <
1/3. Then for (3.3) to hold let kn ∼ nχ where χ > 0 satisfies

max
(1− ι/2

2r
,
ι

rκ

)
< χ < min

( ι
2
, 1− 2ι

κ

)
.

Hence, we require r > 2/κ which is a slightly stronger restriction than Assumption 4 (i). �

In the following, we study the power of the test, that is, the probability to reject a false
hypothesis against a sequence of linear local alternatives that tends to zero as the sample
size tends to infinity. More precisely, let (ϕe

qn)n>1 be a sequence of (nonstochastic) functions
satisfying∥∥T ϕe

qn − q − δnξeq
∥∥2
W

= o(δ2n) where δ2n =
√

2mn. (3.4)

Here, ξeq ∈ L2
W is a function satisfying ‖ξeq‖2W > 0. The next result establishes asymptotic

normality for the standardized test statistic Se
n(q).

Corollary 3.2. Let Assumptions 1, 2 (i), 3, 4, and 6 be satisfied. Assume that (ϕeqn)n>1
satisfies (3.4). If condition (3.3) holds true we have(

2mn

)−1/2( 1

q(1− q)
Se
n(q)−mn

)
d→ N

( ∞∑
j=1

∫ 1

0
E[ξeq(W )fj(W )]2dq, 1

)
.

3.2. Testing additivity

The test statistic given in (2.4) is also convenient to check additional restrictions on the
structural effect ϕq for 0 < q < 1. These additional restrictions can be easily imposed
by constraints on the functions of the sieve space Bkn . For instance, one may impose an
additive structure of the quantile structural effects.
By assuming an additive structure of ϕq one might reduce the effect of dimensionality of
the regressors on the convergence rate of an estimator (cf. Chen and Pouzo [2012] in case of
instrumental quantile regression). Applying this structure leads, however, to inconsistent
estimators in general if the function ϕq does not obey an additive form. Our aim in the
following is to test whether

Hadd
0 : there exist functions ϕ1

q , ϕ
2
q ∈ B such that P(Y 6 ϕ1

q(Z
′) + ϕ2

q(Z
′′)|W ) = q.

Similarly as above we obtain the test statistic

Saddn (q) =
( n∑
i=1

(1{Yi 6 ϕ̂add
qn (Zi)}−q)fmn(Wi)

)t
(Wt

mn
Wmn)−

n∑
i=1

(1{Yi 6 ϕ̂add
qn (Zi)}−q)fmn(Wi)

Here the estimator ϕ̂add
qn = (ϕ̂1

qn, ϕ̂
2
qn) of ϕq = (ϕ1

q , ϕ
2
q) is given by (2.3) where the sieve basis

is a tensor product of basis functions that depend either on Z ′ or Z ′′. For a more detailed
discussion we refer to Section 6 of Chen and Pouzo [2012]. The next asymptotic normality
result is a direct consequence of Corollary 2.3 and hence its proof is omitted.

Corollary 3.3. Given the conditions of Corollary 2.3 we have under Hadd
0(

2mn

)−1/2( 1

q(1− q)
Saddn (q)−mn

)
d→ N (0, 1).
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4. Monte Carlo simulation

In this section, we study the finite-sample performance of our test by presenting the results
of a Monte Carlo investigation. There are 1000 Monte Carlo replications in each experiment.
Results are presented for the nominal levels 0.05. Let Φ denote the cumulative standard
normal distribution function. Throughout this simulation study, realizations (Z,W ) were
generated by Z = Φ

(
ζω +

√
1− ζ2 ε

)
and W = Φ(ω) where ω is independent of ε and

ω, ε ∼ N (0, 1). Here, the constant ζ > 0 determines the degree of correlation between Z
and W and is varied in the experiments.

4.1. Testing a Nonparametric Specification

We begin with the finite-sample analysis of our test statistics in case of nonparametric
specification testing. To analyze the finite sample power we distinguish in the following
between a failure of the null hypothesis caused either by a lack of instrument validity or by
non-monotonicity of the structural function in unobservables.

Failure of instrument validity. We first generate realizations of Y under the null hypothesis
H0. Recall that under H0 there exists a function ϕ ∈ B(0,1) such that P(Y 6 ϕ(Z, q)|W ) =
q for all q ∈ (0, 1). In the following finite sample analysis, we restrict B(0,1) to contain
continuously differentiable functions only. Under H0 we generate realizations of Y from the
nonseparable model

Y = φ(Z)(1 + V/6) + V/2 (4.1)

where V = ϑ ε+
√

1− ϑ2 ε with ε ∼ N (0, 1) independent of (ω, ε) and ϑ = 0.7. We consider
the function φ(z) =

∑∞
j=1 j

−4 cos(jπz). For computational reasons we truncate the infinite
sum at 100. The resulting function is displayed in Figure 1. Since φ is continuously differ-
entiable the null hypothesis H0 is satisfied with ϕ(z, q) = φ(z)

(
1 + F−1V (q)/6

)
+ F−1V (q)/2,

where F−1V denotes the quantile function of V .

Figure 1: Graphs of φ and ϕe
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When H0 is false we generate realizations of Y from

Y = (φ(Z) + ρj(Z))(1 + V/6) + V/2 (4.2)
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Table 1: Empirical rejection probabilities for the standardized test statistic 3
√

5/mn

(
Sn −

mn/6
)

and its bootstrap version 3
√

5/(mn(σ2ε + 1))
(
S∗n−mn(σ2ε +1)/6

)
with vary-

ing dimension parameters kn and mn with ln = 2kn.

Sample Model Emp. Rejection prob. Emp. Rejection prob.

Size using Sn using S∗n
aaaaaaa
kn

mn 20 25 30 20 25 30

500 H0 true 4 0.085 0.083 0.082 0.064 0.052 0.050

ρ1 0.317 0.289 0.259 0.252 0.224 0.196

ρ2 0.337 0.302 0.289 0.298 0.248 0.215

ρ3 0.393 0.354 0.341 0.356 0.308 0.301

ρ3 0.739 0.701 0.670 0.748 0.680 0.658

H0 true 5 0.076 0.076 0.080 0.044 0.032 0.048

ρ1 0.195 0.179 0.169 0.106 0.106 0.047

ρ2 0.200 0.194 0.174 0.130 0.116 0.064

ρ3 0.171 0.153 0.152 0.082 0.082 0.064

ρ3 0.270 0.257 0.228 0.168 0.140 0.095

1000 H0 true 4 0.077 0.082 0.081 0.060 0.074 0.076

ρ1 0.630 0.587 0.553 0.576 0.540 0.502

ρ2 0.636 0.582 0.549 0.576 0.544 0.492

ρ3 0.738 0.697 0.670 0.710 0.662 0.638

ρ3 0.905 0.882 0.864 0.938 0.924 0.896

H0 true 5 0.203 0.192 0.178 0.098 0.104 0.094

ρ1 0.554 0.518 0.495 0.420 0.396 0.380

ρ2 0.629 0.596 0.549 0.532 0.478 0.460

ρ3 0.423 0.410 0.385 0.338 0.314 0.272

ρ3 0.622 0.593 0.574 0.576 0.550 0.520

where ρj(z) = 10 j (z 1{z 6 0.25} + (z − 1)1{z > 0.25}) for j = 1, 2 and ρj(z) =
(z/2cj)1{0.5 − cj 6 z < 0.5 + cj} for j = 3, 4, with c3 = 0.1 and c4 = 0.05. Here,
the variable V is generated as in (4.1). Under (4.2), the structural function ϕ satisfying
the quantile restriction P(Y 6 ϕ(Z, q)|W ) = q is given by ϕ(z, q) = (φ(z) + ρj(z))(1 +
F−1V (q)/6) + F−1V (q)/2. So ϕ(·, q) is not continuously differentiable and thus, H0 is false.
Due to the ill-posed inverse problem estimation of ϕ(·, q) we cannot choose kn sufficiently
large to capture such irregularities which implies finite sample power of our test against
those alternatives. This corresponds to the analysis of Horowitz [2011] in the instrumental
mean regression case.
For each quantile 0 < q < 1, we estimate the structural function using the estimator ϕ̂qn
given in (2.3) with B-splines as approximation basis functions. More precisely, for the sieve
space Bkn we use B-splines of order 2 with 1 knot or 2 knots (hence kn = 4 or kn = 5)
and for the criterion function we use B-splines of order 2 with 5 knots or 7 knots (hence
ln = 2kn), respectively. We thus follow Chen and Christensen [2015] and choose ln to be
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a constant multiple of kn. Also for the vector of basis functions fmn , used to construct
the test statistic, we use B-spline basis of order 2 with knots varying between 17, 22 or 27
(hence mn = 20, mn = 25 or mn = 30).
The empirical rejection probabilities of our standardized test statistic 3

√
5/mn

(
Sn−mn/6

)
at nominal level 0.05 are shown in Table 1. We approximate the integral over the quantiles
on (0, 1) by the mean of a random sample from the uniform (0, 1) distribution. As we see
from Table 1, our test is less sensitive with respect to the choice of mn than to the choice
of kn, which is not surprising and well known from nonparametric instrumental variable
estimation problems, see also Chen and Pouzo [2015]. Table 1 shows the empirical rejection
probabilities for the sample sizes 500 and 1000. We see that as the sample size increases
the finite sample rejection probabilities become larger in the alternative models. For kn = 4
we see that the finite sample coverage improves slightly as the sample size increases. This
is not the case for kn = 5 which appears to be an inappropriate choice implying a large
variance.
In Table 1 we also compare our testing procedure to a bootstrap version of it. We consider
the generalized residual bootstrap as proposed in Subsection 2.6. We generate the bootstrap
weights by ε ∼ N (1, σ2ε), independently of (Y,X,W ), where σε = 0.5. We run 200 bootstrap
evaluations per Monte Carlo replication. In particular, from Table 1 we see that bootstrap
leads to an improvement in the finite sample coverage in the true model. In this sense, the
bootstrap test statistic is less sensitive to the choice of kn under the true model. Similar to
Chen and Pouzo [2015] (see p. 1059), we see only a minor improvement of the bootstrap
test in the alternative models but we expect that it improves further as the number of
bootstrap runs in increased.
As we fix the dimension parameter ln = 2kn, two dimension parameters remain to be
chosen by the econometrician, namely, kn and mn. While proposing an adaptive testing
procedure is beyond the scope of this paper, we want to provide an heuristic argument
for the parameter choice. Intuitively, we want to choose kn such that we have a good
model fit, i.e., a small value of test statistic, and mn to have good power properties, i.e., a
large value of the test statistics. Moreover, the choice should reflect the rate requirement

from our theory, that is, kn 6 ln = o(m
1/2
n ) and mn = o(n1/2). We implement such a

heuristic parameter choice criterion via the following minimum-maximum principle. That
is, if {s(kn,mn)} denotes the standardized value of our test Sn with dimension parameters
kn and mn then we choose these parameters such that

min
kn<n1/4

max
k2n6mn<n1/2

{s(kn,mn)}.

The values of this minimum-maximum principle (over the range mn ∈ {20, 25, 30} and
kn ∈ {4, 5}) are shown in bold in Table 1. Note that the requirement kn < n1/4 implies
kn 6 4 when n = 500 and kn 6 5 when n = 1000. Further, mn < n1/2 implies mn 6 22
for n = 500 and mn 6 31 for n = 1000. We see that this criterion helps to avoid choosing
the dimension parameter kn too large which would yield inaccurate coverage. Such a rule,
however, does not account for ill-posedness of the estimation problem and hence, kn might
still be chosen too large. We thus could calculate the sieve measure of ill-posedness by
estimating the first kn minimal eigenvalues of Tq (see also Chen and Pouzo [2015]).

Failure of monotonicity in unobservables. We study the finite sample power of our test
when ϕ is not strictly monotonic in the structural disturbance V . Realizations of Y were
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generated from

Y = Φ(Z + V )V 2 (4.3)

where V = Φ
(
(ϑ ε +

√
1− ϑ2 ε)/4

)
with ε ∼ N (0, 1) and where ϑ = 0.8. When H0 is false

Table 2: Empirical rejection probabilities for the standardized test statistic 3
√

5/mn

(
Sn −

mn/6
)

and 3
√

5/(mn(σ2ε + 1))
(
S∗n − mn(σ2ε + 1)/6

)
using varying dimension pa-

rameters kn and mn with ln = 2kn.

Sample Model Emp. Rejection prob. Emp. Rejection prob.

Size using Sn using S∗n
aaaaaaa
kn

mn 20 25 30 20 25 30

500 (4.3) 4 0.043 0.066 0.079 0.022 0.044 0.058

(4.4) with j=1 0.390 0.433 0.393 0.338 0.324 0.298

(4.4) with j=2 0.966 0.967 0.959 0.984 0.970 0.964

(4.5) with j=1 0.441 0.492 0.435 0.376 0.372 0.342

(4.5) with j=2 0.976 0.979 0.968 0.994 0.982 0.978

(4.3) 5 0.048 0.063 0.083 0.024 0.030 0.036

(4.4) with j=1 0.183 0.247 0.215 0.132 0.126 0.110

(4.4) with j=2 0.671 0.710 0.649 0.722 0.662 0.602

(4.5) with j=1 0.219 0.278 0.259 0.154 0.144 0.112

(4.5) with j=2 0.721 0.746 0.672 0.766 0.704 0.650

1000 (4.3) 4 0.042 0.080 0.082 0.032 0.037 0.038

(4.4) with j=1 0.717 0.712 0.681 0.696 0.677 0.636

(4.4) with j=2 1.000 1.000 0.999 1.000 1.000 1.000

(4.5) with j=1 0.751 0.768 0.737 0.752 0.733 0.694

(4.5) with j=2 1.000 0.999 0.999 1.000 1.000 1.000

(4.3) 5 0.044 0.055 0.057 0.030 0.030 0.042

(4.4) with j=1 0.452 0.435 0.394 0.414 0.368 0.332

(4.4) with j=2 0.966 0.953 0.932 0.982 0.974 0.968

(4.5) with j=1 0.515 0.490 0.441 0.490 0.442 0.400

(4.5) with j=2 0.971 0.961 0.950 0.984 0.982 0.982

we generate

Y = Φ(Z + V )(V − 0.5)2j (4.4)

or

Y = Φ(Z + V )Φ−2j(V ) (4.5)

for j = 1, 2. In the alternative models, the structural disturbance enters the model in
a nonmonotonic way. We construct the statistic Sn and its bootstrap counterpart S∗n as
described in the previous paragraph.
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Table 2 depicts the empirical rejection probabilities of our test against the alternative models
(4.4) and (4.5). Again we observe that our test is not very sensitive to the choice of the
dimension parameter mn. Our test becomes somewhat less powerful for large kn. But in
contrast to the alternatives involving discontinuous functions in the previous paragraph,
the choice of kn is not as sensitive. For each choice of parameter kn, our test becomes
more powerful as the sample size increases from 500 to 1000. For n = 1000 we see that the
parameter choice kn = 5 leads to a more accurate finite sample coverage. This is captured
by the minimum-maximum principle as introduced above. Again, the resulting values of
the test statistic using this criterion over the range mn ∈ {20, 25, 30} and kn ∈ {4, 5} are
shown in bold. Again we observe that the boostrap version of the test statistic behaves
similarly as the statistic Sn.

4.2. Testing exogeneity

Realizations Y were generated by

Y = ϕe(Z) + V/2

where V is generated as described in model (4.1), that is, V = ϑ ε +
√

1− ϑ2 ε with ε ∼
N (0, 1) independent of (ω, ε). The function ϕe is given by ϕe(z) =

∑∞
j=1(−1)j+1 j−2 sin(jπz).

Again, for computational reasons we truncate the infinite sum at 100. The resulting func-
tion is displayed in Figure 1. Note that ϑ determines the degree of endogeneity of Z and
is varied among the experiments. The null hypothesis H0 : P(Y 6 ϕe(Z)|Z) = q holds true
if ϑ = 0 and is false otherwise. In the following, we perform a test at the median q = 0.5.
As our test relies on the equation P(Y 6 ϕe(Z)|W ) = q we expect our test to have more
power as the correlation between W and Z increases.
The test statistic is implemented as described in Section 4.2. To estimate the structural
effect we make use of the estimator ϕ̂e

qn of He and Shi [1994] given in (3.2). Here, we use
B-splines of order 2 with 1 knot (hence kn = 4) or 2 knots (hence kn = 5). In contrast
to the previous section, the choice of the dimension parameter kn is not affected by the
ill-posedness of the underlying inverse problem. As above, the vector of basis functions fmn

is also constructed with B-spline basis of order 2 with knots varying between 17, 22 or 27
(hence mn = 20, mn = 25 or mn = 30).
Table 3 depicts the empirical rejection probabilities with varying number of basis functions.
As we see from Table 3, our test becomes more powerful for larger ζ; that is, for instruments
with a stronger correlation to the covariates Z. From Table 3 we see that the test of
exogeneity becomes somewhat less powerful for larger values of mn. On the other hand, the
test seems not to be too sensitive with respect to the choice of the dimension parameters
kn and mn. We also see from Table 3 that the finite sample coverage and power properties
of the test improve as the sample size increases from 500 to 1000.
Similarly as above, a guideline for smoothing parameter choice in practice is given by the
following minimum-maximum principle. That is, if

{
seq(kn,mn)

}
denotes the standardized

value of our test Se
n(q) with dimension parameters kn and mn then choose these parameters

such that

min
kn<n1/4

max
k2n6mn<n1/2

{
seq(kn,mn)

}
.

Again this criterion takes the rate condition for the asymptotic theory into account. In Table
3 the resulting values of the test statistic using this criterion over the range mn ∈ {20, 25, 30}
and kn ∈ {4, 5} are shown in bold.
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Table 3: Empirical rejection probabilities for the standardized test statistic

(2mn)−1/2
(
4Se

n(0.5)−mn

)
with varying dimension parameters kn and mn.

ζ ϑ Emp. Rejection prob. Emp. Rejection prob.

using Se
n(0.5) with n = 500 using Se

n(0.5) with n = 1000
aaaaaaa
kn

mn 20 25 30 20 25 30

0.4 0.00 4 0.064 0.064 0.064 0.064 0.062 0.056

0.30 0.172 0.161 0.139 0.350 0.290 0.264

0.35 0.231 0.204 0.176 0.497 0.436 0.392

0.40 0.319 0.275 0.256 0.659 0.605 0.546

0.45 0.425 0.389 0.334 0.821 0.775 0.717

0.7 0.00 0.067 0.067 0.057 0.054 0.059 0.049

0.30 0.273 0.246 0.219 0.664 0.584 0.542

0.35 0.393 0.363 0.321 0.859 0.800 0.755

0.40 0.571 0.515 0.465 0.970 0.947 0.908

0.45 0.746 0.680 0.619 0.997 0.990 0.982

0.4 0.00 5 0.065 0.067 0.063 0.059 0.057 0.055

0.30 0.170 0.154 0.148 0.335 0.287 0.264

0.35 0.227 0.202 0.179 0.501 0.428 0.388

0.40 0.315 0.278 0.256 0.667 0.598 0.553

0.45 0.429 0.386 0.355 0.824 0.775 0.715

0.7 0.00 0.061 0.057 0.055 0.049 0.041 0.045

0.30 0.247 0.221 0.201 0.647 0.581 0.525

0.35 0.393 0.353 0.318 0.858 0.797 0.727

0.40 0.571 0.495 0.438 0.966 0.940 0.905

0.45 0.725 0.658 0.598 0.997 0.990 0.983

5. An empirical illustration

To illustrate our testing procedure, we present an empirical application concerning estima-
tion of the effects of class size on students’ performance on standardized tests. Angrist and
Lavy [1999] studied the effects of class size on test scores of 4th and 5th grade students in
Israel. In this empirical illustration, we focus on 4th grade reading comprehension which
was also considered by Horowitz [2011].
In this empirical example we study the model

Ysc = ϕ(Zsc, Vsc) +Dsc β(Vsc) (5.1)

where Ysc is the average reading comprehension test score of 4th grade students in class
c of school s, Zsc is the number of students in class c of school s, Dsc is the fraction
of disadvantaged students in class c of school s with unknown scalar function β, Vsc =
Us + εsc where Us is an unobserved school-specific random effect, and εsc is an unobserved,
independently over classes and schools distributed random variable.
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The class size Zsc may be endogenous, for instance, due to the socioeconomic background of
the students. To identify the causal effect of class size on scholar achievement Angrist and
Lavy [1999] use Maimonides’ rule as instruments. According to this administrative rule,
maximum class size is given by 40 pupils and will be split if the number of enrolled students
exceeds this number. More precisely, assuming that cohorts are divided into classes of equal
size, Maimonides rule is described by

Wsc = Es/d1 + (Es − 1)/40e

where Es denotes enrollment in school s and dxe denotes the largest integer less or equal
to x. Note that Horowitz [2011] could show that a linear relation between class size and
scholar achievement as used by Angrist and Lavy [1999] is misspecified. To apply our tests,
we consider a subsample where only one representative class per school is considered. By
doing so, we avoid that rejection of a hypothesis may be caused by within class correlation.
Moreover, only schools with at least two classes are considered which leads to a sample size
of 707.
In the following, we want to test nonparametrically whether class size is endogenous at
the 0.5–quantile. The null hypothesis is that P(Ysc 6 ϕ(Zsc, q) + Dsc β(q)|Zsc) = q where
q = 0.5. The value of our test statistic Se

n(0.5) = (2mn)−1/2
(
4Se

n(0.5) − mn

)
is given

by 1.885. For the choice of smoothing parameters kn and mn we applied the minimum-
maximum principle as described in Section 4.2. The resulting dimension parameters are
kn = 4 and mn = 23.2 We thus, reject the hypothesis of exogeneity at the 0.05 nominal
level. In particular, in model (5.1) under conditions (a.1)– (a.3) we conclude that Zsc is
not independent of Vsc.
We now test whether the model (5.1) with conditions (a.1)– (a.3) is correctly specified.
We construct our test statistic using B-splines as described in Section 4.1. For the choice of
smoothing parameters kn and mn we applied the minimum-maximum principle as described
in Section 4.2. As in the Monte Carlo section we choose ln = 2kn. Our test statistic attains
the value 1.4152 and thus fails to reject the nonseparable model (5.1) with conditions
(a.1)– (a.3) at the 0.05 nominal level. This value of the test statistic is obtained when
kn = 4 and mn = 26. For the fixed quantile q = 0.5, we also performed a test of P(Ysc 6
ϕ(Zsc, q) + Dsc β(q)|Wsc) = q. In this case, our test statistic attains the value 0.981 and
again fails to reject the hypothesis.3

For the full sample, Figure 2 depicts estimators of the structural effect ϕq for the quantiles
q ∈ {0.25, 0.5, 0.75} where the number of disadvantaged students is smaller than 15% (in
this case n = 688). The solid black lines are the estimators and the blue lines are the 90%
pointwise bootstrap confidence intervals (we account for within school correlation by using
schools as the bootstrap sampling units, see also Horowitz [2011]). We can see that the
confidence intervals are tight enough to reject the hypothesis that the quantile structural
effects are overall upward sloping. In particular, we see that the effect of class size variation
on test scores is more severe for lower performing classes.

6. Conclusion

In this paper, we develop a nonparametric specification test for the quantile regression model
(1.1). The test statistic is easy to implement and a natural extension of specification testing
in a parametric framework. We establish the asymptotic distribution of our test under the
null hypothesis. Our test is consistent against a fixed alternative and we study its power
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Figure 2: Estimated structural effects (solid black lines) for q ∈ {0.25, 0.5, 0.75} and 90%
confidence intervals (blue lines)

properties by considering a sequence of local alternatives. We also provide extensions of our
test theory concerning model simplification. We demonstrate via Monte Carlo simulations
that our testing procedure performs well in finite samples. The usefulness of our testing
procedure is illustrated by an empirical example.

Notes
1Since conditional expectations are defined only up to equality almost surely, all (in)equalities with

conditional expectations and/or random variables are understood as (in)equalities almost surely.
2The value of the test for other choices of kn is 2.254 for kn = 3 and 2.182 for kn = 5 where ln = 2kn

and mn is maximized over the range k2
n to 26 (being the largest integer smaller than

√
707).

3This is not the case if kn is chosen too small or too large. For instance if kn = 4 or kn = 9, respectively,
then the value of the test statistic is 2.064 or 3.420 (as above maximized of mn and ln = 2kn).
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A. Appendix

A.1. Proofs of Section 3.

In the appendix, fmn denotes an mn dimensional vector with entries fj for 1 6 j 6 mn.
Moreover, ‖ · ‖ is the usual Euclidean norm. For ease of notation, let Xi = (Yi, Zi,Wi) for
1 6 i 6 n with realizations x = (y, z, w) ∈ Y × Z × W. Let H be a class of measurable
functions with a measurable envelope function H. Then N(ε,H, L2

X) and N[ ](ε,H, L2
X),

respectively, denote the covering and bracketing numbers for the set H. In addition, let
J[ ](1,H, L2

X) denote a bracketing integral of H, that is,

J[ ](1,H, L2
X) =

∫ 1

0

√
1 + logN[ ](ε ‖H‖X ,H, L2

X)dε.

Throughout the proofs, we will use C > 0 to denote a generic finite constant that may be
different in different uses. Further, for ease of notation we write

∫
for

∫ 1
0 ,
∑

i for
∑n

i=1,

and
∑

i′<i for
∑n

i=1

∑i−1
i′=1. For any φ, ψ ∈ L2

W , the inner product in L2
W is denoted by〈

φ, ψ
〉
W

= E[φ(W )ψ(W )] and let Fmnφ =
∑mn

j=1

〈
φ, fj

〉
W
fj . In the following, we denote

Q̂n = n−1
∑

i fmn(Wi)fmn(Wi)
t. By Assumption 1, the eigenvalues of E[fmn(W )fmn(W )t]

are bounded away from zero and hence, it may be assumed that E[fmn(W )fmn(W )t] = Imn

where Imn denotes the mn dimensional identity matrix (cf. Newey [1997], p. 161).
In the following result, we establish continuity of the mapping q 7→ ϕ(·, q) under the tan-
gential cone condition and a mild assumption on the sieve approximation error for ϕq.

Lemma A.1. Let Assumption 2 be satisfied. Assume for almost all q ∈ (0, 1) there exists
a function ϕq with T ϕq = q, let Tq be compact, and ‖ϕq −Πkϕq‖Z = o(1) as k →∞. Then
the mapping q 7→ ϕ(·, q) is continuous.

Proof. For some q ∈ (0, 1), since the linear operator Tq is compact there exists singular
value decomposition of it denoted by {sqj , ej , fj}j>1. For any ε > 0 and k sufficiently large,
let us define δ = (1 − η) ε sqk/3. We consider q′ ∈ (0, 1) such that |q − q′| < δ. Since
q, q′ satisfy the quantile restriction we have ‖T ϕq − T ϕq′‖W < δ. Let us further denote
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rk(q) = ‖Πkϕq − ϕq‖W . We have rk(q) 6 ε/6 by assumption for all q. By Assumption 2
(ii) and the triangular inequality it holds

‖T ϕq−T ϕq′‖W > (1− η)‖Tq(ϕq − ϕq′)‖W
= (1− η)‖TqΠk(ϕq − ϕq′)− Tq(Πkϕq − ϕq) + Tq(Πkϕq′ − ϕq′)‖W

> (1− η)
(
‖TqΠk(ϕq − ϕq′)‖W − ‖Tq(Πkϕq − ϕq)‖W − ‖Tq(Πkϕq′ − ϕq′)‖W

)
> (1− η) sqk

(
‖Πk(ϕq − ϕq′)‖Z − rk(q)− rk(q′)

)
> (1− η) sqk

(
‖ϕq − ϕq′‖Z − 2rk(q)− 2rk(q

′)
)
,

using that (sqj)j>1 is a nonincreasing sequence. This implies

‖ϕq − ϕq′‖Z 6 (1− η)−1 s−1qk δ + 2rk(q) + 2rk(q
′)

6 (1− η)−1 s−1qk δ + 2 ε/3

6 ε,

which proves the result.

Proof of Proposition 2.1. For any q ∈ (0, 1), since the linear operator Tq is compact
there exists singular value decomposition of it denoted by {sqj , ej , fj}j>1. Let us denote〈
φ, ej

〉
Z

:= E[φ(Z)ej(Z)]. Consider first the polynomial case, i.e., sqj = j−ζ for some ζ > 0.

Consider the set of functions Ψ =
{
ψ ∈ L2

W :
〈
ψ, fj

〉
W
∼ j−2(ζ+δ′)−1 for some δ′ < δ

}
. This

set is obviously compact with Ψ ∈ L2
W ⊂

{
ψ ∈ L2

W :
∑∞

j=1 j
2ζ
〈
ψ, fj

〉2
W
< C

}
⊂ L2

W . For

any ψ ∈ Ψ there exists φ ∈ L2
Z such that ‖Tqφ− ψ‖W = 0 or equivalently

∞∑
j=1

(
j−ζ
〈
φ, ej

〉
Z
−
〈
ψ, fj

〉
W

)2
= 0.

Thus for each j > 1 we have
〈
φ, ej

〉
Z

= jζ
〈
ψ, fj

〉
W

and thus〈
φ, ej

〉2
Z
∼ j−1−2δ′

and since δ′ < δ the function φ does not belong to B. Consequently, for each ψ ∈ Ψ the
associated function φ ∈ L2

Z does not belong to B, i.e., Ψ does not belong to the closure of
Rq(B). In the exponential case, i.e., s2qj = exp(−j2ζ), the result follows immediately from
the above, which completes the proof.

Proof of Theorem 2.2. Since we have ‖Q̂n− Imn‖2 = op(m
2
n/n) it is sufficient to prove

that 3
√

5/mn

(∑mn
j=1

∫
|n−1/2

∑
i(1 {Yi 6 ϕ̂qn(Zi)}−q)fj(Wi)|2dq−mn/6

) d→ N (0, 1). The
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proof is based on the decomposition

mn∑
j=1

∫ ∣∣n−1∑
i

(1 {Yi 6 ϕ̂qn(Zi)} − q)fj(Wi)
∣∣2dq

=

mn∑
j=1

∫ ∣∣n−1∑
i

(1 {Yi 6 ϕ(Zi, q)} − q)fj(Wi)
∣∣2dq

− 2

n2

mn∑
j=1

∫ (∑
i

(1 {Yi 6 ϕ(Zi, q)} − q)fj(Wi)
)

×
(∑

i

(
1{Yi 6 ϕ̂qn(Zi)} − 1{Yi 6 ϕ(Zi, q)}

)
fj(Wi)

)
dq

+

mn∑
j=1

∫ ∣∣n−1∑
i

(
1{Yi 6 ϕ̂qn(Zi)}−1{Yi 6 ϕ(Zi, q)}

)
fj(Wi)

∣∣2dq = In−2IIn+IIIn.

(A.1)

Consider In. We calculate further

m−1/2n

(
nIn −mn/6

)
=

1
√
mnn

∑
i

mn∑
j=1

(∫
|(1 {Yi 6 ϕ(Zi, q)} − q)fj(Wi)|2dq − 1/6

)
+

1
√
mnn

∑
i 6=i′

mn∑
j=1

∫ (
1 {Yi 6 ϕ(Zi, q)}− q

)(
1 {Yi′ 6 ϕ(Zi′ , q)}− q

)
fj(Wi)fj(Wi′)dq

where the first summand tends in probability to zero as n→∞. Indeed,we have

E
∫
|(1{Y 6 ϕ(Z, q)} − q)fj(W )|2dq = E[f2j (W )]

∫
q(1− q)dq = 1/6

for all j > 1 and hence,

E
∣∣∣ 1
√
mnn

∑
i

mn∑
j=1

(∫
|(1 {Yi 6 ϕ(Zi, q)} − q)fj(Wi)|2dq − 1/6

)∣∣∣2
6

1

mnn

∫
E
∣∣∣ mn∑
j=1

|(1 {Y 6 ϕ(Z, q)}−q)fj(W )|2−E |(1{Y 6 ϕ(Z, q)}−q)fj(W )|2
∣∣∣2dq

6
1

mnn
sup
w∈W

‖fmn(w)‖4
∫

E |1 {Y 6 ϕ(Z, q)} − q|4dq

6 O(mn/n) = o(1)

by using supw∈W ‖fmn(w)‖2 6 Cmn. Therefore, to establish 3
√

5/mn(nIn − mn/6)
d→

N (0, 1) it is sufficient to show

3
√

5
√
mnn

∑
i 6=i′

mn∑
j=1

∫ (
1 {Yi 6 ϕ(Zi, q)}−q

)(
1 {Yi′ 6 ϕ(Zi′ , q)}−q

)
fj(Wi)fj(Wi′)dq

d→ N (0, 1).

This follows from Lemma A.3. Consider IIIn. Let us denote Bn := {φ ∈ B(0,1) : 9φ −
ϕ92

Z,p 6 m
−(1+c)/κ
n } for some constant c > 0 and Bqn := {φq : φ ∈ Bn} ⊂ B. Further, we
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denote for 1 6 j 6 mn and 1 6 i 6 n

hqj(Xi, φq) =
(
1{Yi 6 φ(Zi, q)} − 1 {Yi 6 ϕ(Zi, q)}

)
fj(Wi)

and the classes Hqjn = {hqj(·, φq) : φq ∈ Bqn} and Hqj = {hqj(·, φq) : φq ∈ B}. We observe

IIIn =

mn∑
j=1

∫ ∣∣n−1∑
i

hqj(Xi, ϕ̂qn)
∣∣2dq

6 2ηp 9 T ϕ̂·n − T ϕ 92
W +2

mn∑
j=1

∫ ∣∣n−1∑
i

hqj(Xi, ϕ̂qn)−
〈
T ϕ̂qn − T ϕq, fj

〉
W

∣∣2dq.
From (A.4) in Lemma A.2 together with condition nτn = o(

√
mn) we deduce n 9 T ϕ̂·n −

T ϕ92
W = op(

√
mn). Further, we observe for every φq ∈ Bqn that∣∣hqj(Xi, φq)
∣∣2 6 max

φq∈Bqn

∣∣(1{Yi 6 φ(Zi, q)} − 1 {Yi 6 ϕ(Zi, q)}
)
fj(Wi)

∣∣2 =: H2
qj(Xi)

and hence, Hqj is an envelope function of the class Hqjn and due to Assumption 3 we have

E[
∫
H2
qj(X)dq] 6 Cm−(1+c)n . Moreover, (A.5) in Lemma A.2 together with condition (2.11)

implies 9ϕ̂·n − ϕ92
Z,p = op

(
m
−(1+c)/κ
n

)
and thereby

P
( mn∑
j=1

∫ ∣∣n−1∑
i

hqj(Xi, ϕ̂qn)−
〈
T ϕ̂qn − T ϕq, fj

〉
W

∣∣2dq > ε
)

6
mn∑
j=1

ε−1 E sup
φ∈Bn

∫ ∣∣∣n−1/2∑
i

hqj(Xi, φq)− Ehqj(X, φq)
∣∣∣2dq + o(1)

6
mn∑
j=1

ε−1
∫

E max
φq∈Bqn

∣∣∣n−1/2∑
i

hqj(Xi, φq)− Ehqj(X, φq)
∣∣∣2dq + o(1)

6
mn∑
j=1

ε−1
∫ (

E max
φq∈Bqn

∣∣∣n−1/2∑
i

hqj(Xi, φq)−Ehqj(X, φq)
∣∣∣+(E |Hqj(X)|2

)1/2)2
dq+o(1)

where the last inequality is due to Theorem 2.14.5 of van der Vaart and Wellner [2000].
We further conclude by applying the last display of Theorem 2.14.2 of van der Vaart and
Wellner [2000]

E max
φq∈Bqn

∣∣∣n−1/2∑
i

hqj(Xi, φq)− Ehqj(X, φq)
∣∣∣ 6 CJ[ ](1,Hqjn, L2

X)
(
E |Hqj(X)|2

)1/2
for all 0 < q < 1. Now since max16j6mn E

∫
|Hqj(X)|2dq 6 Cm−(1+c)n for n sufficiently large

it is sufficient to show that max16j6mn J[ ](1,Hqjn, L2
X) < C for all 0 < q < 1. From Lemma

4.2 (i) of Chen [2007] we deduce

N[ ](ε
(
E |Hqj(X)|2

)1/2
,Hqjn, L2

X) 6 N[ ]

(
ε,
(
E |Hqj(X)|2

)−1/2Hqjn, L2
X

)
6 N[ ]

(
ε,Hqj , L2

X

)
6 N

(( ε

2C

)2/κ
,B, ‖ · ‖Z,p

)
6 N

(( ε

2C

)2/κ
,B, ‖ · ‖∞

)
.
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Employing condition α0 > dz/p and Theorem 6.2 Part II of Adams and Fournier [2003]
yields that Wα,p is compactly embedded in Wα,∞. Thereby, B ⊂ Wα,p is totally bounded
in Wα,∞ which implies ‖φ‖α,∞ 6 C for all φ ∈ B. Let Wα,∞

C := {Wα,∞ : ‖φq‖α,∞ 6 C}.
Now Theorem 2.7.1 of van der Vaart and Wellner [2000] gives

logN
(
ε2/κ,B, ‖ · ‖∞

)
6 logN

(
ε2/κ,Wα,∞

C , ‖ · ‖∞
)
6 Cε−2dz/(ακ)

where C depends on the diameter of Z. Now due to Assumption 4 (i) it is straightforward
to see that max16j6mn J[ ](1,Hqjn, L2

X) < C and hence, nIIIn = op(
√
mn).

Consider IIn. We observe

nIIn =

mn∑
j=1

∫ (∑
i

(1 {Yi 6 ϕ(Zi, q)} − q)fj(Wi)
)(
n−1

∑
i

hqj(Xi, ϕ̂qn)
)
dq

=

mn∑
j=1

∫ (∑
i

(1 {Yi 6 ϕ(Zi, q)}−q)fj(Wi)
)(
n−1

∑
i

hqj(Xi, ϕ̂qn)−
〈
T ϕ̂qn−T ϕq, fj

〉
W

)
dq

+

mn∑
j=1

∫ (∑
i

(1 {Yi 6 ϕ(Zi, q)} − q)fj(Wi)
)〈
T ϕ̂qn − T ϕq, fj

〉
W
dq

= Cn1 + Cn2.

The Cauchy Schwarz inequality implies for all ε > 0

P(|Cn1| > ε
√
mn) 6 (ε

√
mn)−1

(∫
q(1− q)dq

)1/2
×

mn∑
j=1

(∫
E max
φq∈Bqn

∣∣n−1/2∑
i

hqj(Xi, φq)− Ehqj(X, φq)
∣∣2dq)1/2 + o(1)

= o(1)

where the last equality follows similarly to the proof of nIIIn = op(
√
mn). Consider Cn2.

Let us introduce the function for 1 6 j 6 mn and 1 6 i 6 n

tqn(Xi, φq) :=
(
1 {Yi 6 ϕ(Zi, q)} − q

)(
FmnT φq − FmnT ϕq

)
(Wi)

and the sets Dn :=
{
φ ∈ B(0,1) : n 9 T φ− T ϕ92

W 6
√
mn

}
, Dqn := {φq : φ ∈ Dn} ⊂ B,

Gq := {tqn : φ ∈ B}, and Gqn := {tqn : φ ∈ Dqn}. We calculate

P
(
|Cn2| > ε

√
mn

)
6
√
n(ε
√
mn)−1 E

∫
max
φq∈Dqn

∣∣∣ 1√
n

∑
i

tqn(Xi, φq)
∣∣∣dq + o(1).

Since pW is uniformly bounded away from zero, n9T φ−T ϕ92
W 6

√
mn, and ‖Fmn(T φq−

T ϕq)‖W 6 C‖T φq − T ϕq‖W for all φ ∈ Dn we have |Fmn(T φq − T ϕq)(w)| 6 Cm
1/4
n n−1/2

for almost all 0 < q < 1 and pW –almost all w. Consequently, tqn(x, φq) 6 Cm
1/4
n n−1/2

pW –almost surely. We conclude by again applying the last display of Theorem 2.14.2 of
van der Vaart and Wellner [2000]

E max
φq∈Dqn

∣∣∣ 1√
n

∑
i

tqn(Xi, φq)
∣∣∣ 6 CJ[ ](1,Gqn, L2

X)m1/4
n n−1/2.
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As above it can be seen that J[ ](1,Gqn, L2
X) < C for all 0 < q < 1. Indeed, from Assumption

2 (ii) we conclude ‖T φ − T ϕq‖W 6 (1 + η)‖Tq(φ − ϕq)‖W and further, Assumption 4 (v)
yields ‖Fmn(T φ − T ϕq)‖W 6 C(1 + η)ηp‖φ − ϕq‖Z . Hence, the mapping φ 7→ FmnT φ is
Lipschitz continuous at ϕq and we may apply Theorem 2.7.11 of van der Vaart and Wellner
[2000] which yields

N[ ](ε
(
n−1
√
mn

)1/2
,Gn, L2

X) 6 N[ ](ε,Gq, L2
X)

6 N[ ]

(
ε, {FmnT φ− FmnT ϕq : φ ∈ B}, L2

W

)
6 N

( ε

2C
,B, ‖ · ‖∞

)
.

Thereby, Cn2 = op(
√
mn), which completes the proof.

In the following we make use of the notation gqj(Xi, φ) := (1{Yi 6 φ(Zi)} − q)fj(Wi),
1 6 j 6 mn, 1 6 i 6 n, for any φ ∈ B.

Proof of Proposition 2.5. For the proof it is sufficient to show n−1Sn >
∫
‖T ϕq −

q‖2Wdq/2+op(1). Since
∫
‖n−1

∑
i(1 {Yi 6 ϕ̂qn(Zi)}−1 {Yi 6 ϕq(Zi)})fmn(Wi)‖2dq = op(1)

(cf. proof of Theorem 2.2 together with Lemma A.2) we obtain∫ ∥∥n−1∑
i

(1 {Yi 6 ϕq(Zi)} − q)fmn(Wi)
∥∥2dq

=

∫ ∥∥E[((T ϕq)(W )− q)fmn(W )]
∥∥2dq + op(1)

>
∫
‖T ϕq − q‖2Wdq/2 + op(1),

which proves the result.

Proof of Proposition 2.6. Since ϕq = argminφ∈B ‖T φ− q‖W we obtain as in the proof
of Theorem 2.2 by employing the results of Lemma A.2 that

Sn =

mn∑
j=1

∫ ∣∣∣n−1/2∑
i

gqj(Xi, ϕq)
∣∣∣2dq + op(

√
mn).

Further, we calculate

mn∑
j=1

∫ ∣∣∣n−1/2∑
i

gqj(Xi, ϕq)
∣∣∣2dq =

mn∑
j=1

∫ ∣∣∣n−1/2∑
i

(
gqj(Xi, ϕq)− E gqj(Xi, φ)

)∣∣∣2dq
+ 2

mn∑
j=1

∫ (
n−1/2

∑
i

(
gqj(Xi, ϕq)− E gqj(X, ϕq)

))√
nE gqj(X, ϕq)dq

+ n

mn∑
j=1

∫ ∣∣∣E gqj(X, ϕq)∣∣∣2dq
= In + 2IIn + IIIn.
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We have 3
√

5/mn

(
In −mn/6

) d→ N (0, 1). Further, since E[(1{Y 6 ϕ(Z, q)} − q)2|W ] 6 1
we obtain

E |IIn|2 6 nE
∫ ∣∣(1{Y 6 ϕ(Z, q)} − q)

mn∑
j=1

E gqj(X, ϕq)
∣∣2dq

6 n
∫ ∣∣∣ mn∑

j=1

E gqj(X, ϕq)
∣∣∣2dq 6 n ∫ ‖T ϕq − q‖2Wdq (A.2)

and hence IIn = Op((n
∫
‖T ϕq − q‖2Wdq)1/2). Moreover, since n

∫
‖T ϕqn − T ϕq‖2Wdq =

o(
√
mn) and by employing relation (2.13) it is easily seen that

3
√

5
√
mn

IIIn =
3
√

5n
√
mn

∫
‖T ϕqn − q − δnξq‖2Wdq +

∞∑
j=1

∫
E[ξq(W )fj(W )]2dq + o(1),

which proves the result.

Proof of Corollary 2.8. For the proof it is sufficient to show n−1S∗n >
∫
‖T ϕq −

q‖2Wdq/2 + op∗(1) with probability approaching one. Chen and Pouzo [2015] show that
the bootstrap version of the sieve estimator ϕ̂∗qn converges at the same rate as ϕ̂qn. In light
of the proof of Proposition 2.5, it is sufficient to show∫ ∥∥n−1∑

i

εi(1 {Yi 6 ϕq(Zi)} − q)fmn(Wi)
∥∥2dq

=

∫ ∥∥E[((T ϕq)(W )− q)fmn(W )]
∥∥2dq + op(1)

>
∫
‖T ϕq − q‖2Wdq/2 + op(1),

using that ε is independent of W and E[ε] = 1 as well as Var(ε) < ∞, which proves the
result.

Proof of Corollary 3.1. In light of the proof of Theorem 2.2 is sufficient to prove
n‖T ϕ̂e

qn − T ϕq‖2W = op(
√
mn). Due to Assumption 6 (ii) we obtain as in the proof of

Theorem 6 of Chen et al. [2014] that

‖T ϕ̂e
qn − T ϕq − Tq(ϕ̂e

qn − ϕq)‖W 6 C‖ϕ̂e
qn − ϕq‖2Z

and consequently,

‖T ϕ̂e
qn − T ϕq‖W 6 C

(
‖Tq(ϕ̂e

qn − ϕq)‖W + ‖ϕ̂e
qn − ϕq‖2Z

)
.

Moreover, by applying supy pY |Z,W (y, Z,W ) 6 C and Jensen’s inequality we have

‖Tq(ϕ̂e
qn − ϕq)‖2W =

∫
W
|
∫
Z
pY |Z,W (ϕ(z, q), z, w)(ϕ̂e

qn − ϕq)(z)pZ|W (z, w)dz|2pW (w)dw

6 C‖ϕ̂e
qn − ϕq‖2Z

= Op(R
e
n)

= op(
√
mn/n),

by employing the rate conditions (3.3) and Assumption 6 (iii).
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Proof of Proposition 3.2. Due to the rate restriction (3.3) we may follow the proof of
Theorem 2.2 and Corollary 3.1 and hence obtain

Se
n(q) =

mn∑
j=1

∣∣∣n−1/2∑
i

(1{Yi 6 ϕe
q(Zi)} − q)fj(Wi)

∣∣∣2 + op(
√
mn).

Thus, by following line by line the Proposition 2.6, we obtain the result.

A.2. Technical assertions.

We can not apply the consistency and rate of convergence results of Chen and Pouzo
[2012] when the null hypothesis H0 fails. The following Lemma extends their results to
possibly misspecified instrumental quantile regression. Recall that under misspecification
ϕq = argminφ∈B ‖T φ− q‖W does not satisfy T ϕq = q.

Lemma A.2. Let Assumptions 1–4 hold true. Then

9ϕ̂·n − ϕ92
Z,p = op(1), (A.3)

9T ϕ̂·n − T ϕ92
W = Op

(
ωn +

∫
‖T ϕq − q‖2Wdq

)
, (A.4)

9ϕ̂·n − ϕ92
Z,p = Op

(
9Πknϕ− ϕ 92

Z,p +τkn
(
ωn +

∫
‖T ϕq − q‖2Wdq

))
. (A.5)

Proof. Proof of (A.3). We defineRn := max
(
n−1ln,maxφ∈Bkn

∑
j>ln

E[(T φ(W )−q)fj(W )]2
)
.

From the proof of Proposition 2.5 we have that

ln∑
j=1

E max
φ∈Bkn

∣∣∣n−1∑
i

1{Yi 6 φ(Zi)}fj(Wi)−E[1{Y 6 φ(Z)}fj(W )]
∣∣∣2 = O(n−1ln). (A.6)

Consequently, we observe∫ ∥∥n−1∑
i

(1{Yi 6 Πknϕq(Zi)} − q)fln(Wi)
∥∥2dq 6 2

∫
‖T Πknϕq − q‖2Wdq +Op(Rn).

Further, using the elementary inequality (a − b)2 > a2/2 − b2 and again applying relation
(A.6) gives∫ ∥∥n−1∑

i

(1{Yi 6 φq(Zi)} − q)fln(Wi)
∥∥2dq > ∫ ‖Fln(T φq − q)‖2Wdq/2

−
ln∑
j=1

max
φ∈Bkn

∣∣∣n−1∑
i

1{Yi 6 φ(Zi)}fj(Wi)− E1{Y 6 φ(Z)}fj(W )
∣∣∣2

> C

∫
‖T φq − q‖2Wdq − Op(Rn).

Let us denote Akn = {φ ∈ B(0,1)kn
: 9φ− ϕ92

Z,p > ε} for some ε > 0. Since T is continuous

and ϕq = argminφ∈B ‖T φ−q‖W is unique we have that minφ∈Akn

∫
‖T φq−q‖2Wdq is strictly
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positive for all n > 1. Therefore, we obtain

P
(

9 ϕ̂·n − ϕ92
Z,p > ε

)
6 P

(
min
φ∈Akn

∫ ∥∥∑
i

(1{Yi 6 φ(Zi, q)} − q)fln(Wi)
∥∥2dq

6
∫ ∥∥∑

i

(1{Yi 6 Πknϕ(Zi, q)} − q)fln(Wi)
∥∥2dq)

6 P
(

min
φ∈Akn

∫
‖T φq − q‖2Wdq 6

∫
‖T Πknϕq − q‖2Wdq +Op(Rn)

)
= o(1)

since
∫
‖T Πknϕq − q‖2Wdq =

∫
‖T ϕq − q‖2Wdq + o(1), Rn = o(1), and making use of

minφ∈Akn

∫
‖T φq − q‖2Wdq >

∫
‖T ϕq − q‖2Wdq + o(1). Proof of (A.4). For some ε > 0 let

us denote Dkn = {φ ∈ B(0,1)kn
: 9T φ− T ϕ92

W > εωn}. Therefore, we obtain as above

P
(

9 T ϕ̂·n − T ϕ92
W > εωn

)
6 P

(
min
φ∈Dkn

∫
‖T φq − q‖2Wdq 6

∫
‖T Πknϕq − q‖2Wdq +Op(Rn)

)
.

Further, it holds
∫
‖T Πknϕq− q‖2Wdq 6 29T Πknϕ−T ϕ9W +2

∫
‖T ϕq− q‖2Wdq. We thus

obtain

P
(

9 T ϕ̂·n − T ϕ92
W > ε ωn

)
6 P

(
min
φ∈Dkn

∫
‖T φq−q‖2Wdq 6 29T Πknϕ−T ϕ92

W +2

∫
‖T ϕq−q‖2Wdq+Op(Rn)

)
.

For all φ ∈ Dkn and 0 < q < 1 we have

‖T φq − q‖2W > ‖T ϕq − q‖2W > ‖T φq − T ϕq‖2W /2− ‖T φq − q‖2W

and hence, ‖T φq − q‖2W > ‖T φq − T ϕq‖2W /4. Thereby, we obtain

P
(

9 T ϕ̂·n − T ϕ92
W > ε ωn

)
6 P

(1

4
min
φ∈Dkn

9T φ−T ϕ92
W 6 2 9 T Πknϕ−T ϕ92

W +2

∫
‖T ϕq − q‖2Wdq+Op(Rn)

)
6 P

(ε
4
ωn 6 2η

∫
‖Tq(Πknϕq − ϕq)‖2Wdq + 2

∫
‖T ϕq − q‖2Wdq +Op(Rn)

)
which goes to zero for all n > 1 as ε → ∞. Proof of (A.5). Note that ‖Tq(φ − ϕq)‖W 6
(1− η)−1‖T φ− T ϕq‖W for all φ in a sufficiently small neighborhood around ϕq. Thereby,
due to (A.3) we obtain

9ϕ̂·n − ϕ92
Z,p = Op

(
9Πknϕ− ϕ 92

Z,p +τkn 9 T ϕ̂·n − T ϕ 92
W

)
.

Hence, the result follows by applying (A.4).
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The following lemma is similar to Lemma A.2 of Breunig [2015]. In the following, however,
we provide the proof for the sake of completeness. For all φ ∈ B recall the definition
gj(Xi, φ) = (1{Yi 6 φ(Zi)} − q)fj(Wi) for all 1 6 j 6 mn and 1 6 i 6 n. Let us introduce
Xii′ := 6

√
5/(
√
mnn)

∑mn
j=1

∫
gj(Xi, ϕq)gj(Xi′ , ϕq)dq and

Qni :=

{ ∑i−1
l=1 Xli, for i = 2, . . . , n,

0, for i = 1 and i > n.
(A.7)

Then clearly

3
√

5/(
√
mnn)

∑
i 6=i′

mn∑
j=1

∫
gj(Xi, ϕq)gj(Xi′ , ϕq)dq

= 6
√

5/(
√
mnn)

∑
i<i′

mn∑
j=1

∫
gj(Xi, ϕq)gj(Xi′ , ϕq)dq =

∑
i<i′

Xii′ =
n∑
i=1

Qni.

Let Bni := B((Z1, Y1,W1), . . . , (Zi, Yi,Wi)), 1 6 i 6 n, n > 1, be the σ-algebra generated
by (Z1, Y1,W1), . . . , (Zi, Yi,Wi). Since gj(Xi, ϕq), 1 6 i 6 n, are centered random vari-
ables it follows that {(

∑i
i′=1Qni′ ,Bni), i > 1} is a Martingale for each n > 1 and hence

{(Qni,Bni), i > 1} is a Martingale difference array for each n > 1.

Lemma A.3. Let Qni be defined as in (A.7). Let Assumption 1 and condition (2.10) be

satisfied. Then, we have
∑∞

i=1Qni
d→ N (0, 1).

Proof. For the proof we have to show that the Martingale difference array {(Qni,Bni), i >
1}, n > 1, satisfies the conditions

∞∑
i=1

E |Qni|2 6 1 for all n > 1, (A.8)

∞∑
i=1

Q2
ni = 1 + op(1), (A.9)

sup
i>1
|Qni| = op(1). (A.10)

Then the result follows by Awad [1981]. Proof of (A.8). Since E[(1 {Y 6 ϕ(Z, q)} −
q)(1 {Y 6 ϕ(Z, q′)} − q′)|W ] = min(q, q′)− qq′ we have∫ (

E
[
gj(X, ϕq)gj′(X, ϕq′)

])2
d(q, q′) =

∫
(min(q, q′)−qq′)2d(q, q′)1{j=j′} = 1{j=j′} /90,

where we used that E[fj(W )fj′(W )]2 = 1{j=j′} and∫
(min(q, q′)− qq′)2d(q, q′) =

∫ (∫ q

0
(q′ − qq′)2dq′ +

∫ 1

q
(q − qq′)2dq′

)
dq

=
2

3

∫
q3(1− q)2dq

= 1/90.
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Observe that E[X1iX1i′ ] = 0 for i 6= i′ and thus, for i = 2, . . . , n we have

E |Qni|2 = E |X1i + · · ·+ Xi−1,i|2

= (i− 1)E |X12|2

=
(6
√

5)2(i− 1)

n2mn
E
∣∣ mn∑
j=1

∫
gj(X1, ϕq)gj(X2, ϕq)dq

∣∣2
=

180 (i− 1)

n2mn

mn∑
j,j′=1

∫ (
E[gj(X, ϕq)gj′(X, ϕq′)]

)2
d(q, q′)

=
2(i− 1)

n2
.

Thereby, we conclude

n∑
i=1

E |Qni|2 =
2

n2

n−1∑
i=1

i =
n(n− 1)

n2
= 1− 1

n
(A.11)

which proves (A.8).
Proof of (A.9). Using relation (A.11) we observe

E
∣∣ n∑
i=1

Q2
ni − 1

∣∣2 =

n∑
i=1

EQ4
ni + 2

∑
i<i′

EQ2
niQ

2
ni′ − 1 + o(1) =: In + IIn − 1 + o(1).

Consider In. Observe that

E |Qni|4 = E
∣∣ i−1∑
i′=1

Xi′i
∣∣4 6 ∫ E

∣∣∣ 6
√

5

n
√
mn

mn∑
j=1

gj(Xi, ϕq)
i−1∑
i′=1

gj(Xi′ , ϕq)
∣∣∣4dq

6
C

n4m2
n

sup
w∈W

‖fmn(w)‖4
(

(i− 1)E ‖fmn(W )‖4 + 3(i− 1)(i− 2)(E ‖fmn(W )‖2)2
)

where we used that E[gj(X, ϕq)] = 0 for 0 < q < 1. Since
∑n

i=1 3(i−1)(i−2) = n(n−1)(n−2)
we conclude

In 6 C
(n(n− 1)

2n4
E ‖fmn(W )‖4 +

n(n− 1)(n− 2)

n4
(E ‖fmn(W )‖2)2

)
= o(1)

since (E ‖fmn(W )‖2)2 6 E ‖fmn(W )‖4 6 Cm2
n. We calculate for i < i′

Q2
niQ

2
ni′ =

( i−1∑
k=1

X 2
ki

)( i′−1∑
k=1

X 2
ki′

)
+
( i−1∑
k=1

X 2
ki

)( i′−1∑
k 6=k′
Xki′Xk′i′

)

+
( i−1∑
k 6=k′
XkiXk′i

)( i′−1∑
k=1

X 2
ki′

)
+
( i−1∑
k 6=k′
XkiXk′i

)( i′−1∑
k 6=k′
Xki′Xk′i′

)
=: Aii′ + Bii′ + Cii′ + Dii′ .

Consider Aii′ . Exploiting relation (A.11) and using
∑

i<i′(i− 1) =
∑n

i′=1(i
′− 1)(i′− 2)/2 =

n(n − 1)(n − 2)/6 and further
∑

i<i′(i − 1)(i′ − 3) =
∑n

i′=1(i
′ − 3)(i′ − 2)(i′ − 1)/2 =
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n(n− 1)(n− 2)(n− 3)/8 we obtain

2
∑
i<i′

EAii′ = 4EX 2
12X 2

23

∑
i<i′

(i− 1) + 2(EX 2
12)

2
∑
i<i′

(i− 1)(i′ − 3) + o(1)

6 C
n(n− 1)(n− 2)

n4m2
n

mn∑
j,l=1

∫
E
[
g2j (X, ϕq)g

2
l (X, ϕq′)

]
d(q, q′)

+
n(n− 1)(n− 2)(n− 3)

n4
+ o(1)

since
∫
E[gj(X, ϕq)gj′(X, ϕq′)]d(q, q′) = 1{j = j′}/90. Moreover, applying Cauchy Schwarz’s

inequality twice gives

mn∑
j,l=1

∫
E
[
g2j (X, ϕq)g

2
l (X, ϕq′)

]
d(q, q′) 6 sup

w∈W
‖fmn(w)‖4 6 Cm2

n.

Thereby, it holds 2
∑

i<i′ EAii′ = 1 + o(1). Now consider Bii′ . Since {fl}l>1 forms an
orthonormal basis on the support of W we obtain

E
( i−1∑
k=1

X 2
ki

)( i′−1∑
k 6=k′
Xki′Xk′i′

)
= 2

i−1∑
k=1

EX 2
kiXki′X̧ii′

6
C(i− 1)

n4m2
n

mn∑
j,j′=1

∫
E
∣∣∣gj(X1, ϕq)gj′(X1, ϕq)gj(X2, ϕq)gj′(X2, ϕq′)

× q(1− q)
mn∑
l=1

g2l (X1, ϕq)
∣∣∣d(q, q′, q′′)

6
C(i− 1)

n4mn

( mn∑
j,j′=1

∫
E |gj(X, ϕq)gj′(X, ϕq)|2d(q, q′)

)
6
C(i− 1)mn

n4
.

This, together with relation (A.11), yields
∑

i<i′ EBii′ = o(1). Further, it is easily seen that∑
i<i′ ECii′ = o(1). Consider Dii′ . Using twice the law of iterated expectation gives

EDii′ = E
( i−1∑
k 6=k′
XkiXk′i

)( i′−1∑
k 6=k′
Xki′Xk′i′

)
= 4

i−1∑
k<k′

EXkiXk′iXki′Xk′i′

= 4

i−1∑
k<k′

E
[
XkiXk′i E[Xki′Xk′i′ |(Yk, Zk,Wk), (Yk′ , Zk′ ,Wk′), (Yi, Zi,Wi)]

]
6

C

n2mn

i−1∑
k<k′

E
[
E[XkiXk′i|(Yk, Zk,Wk), (Yk′ , Zk′ ,Wk′)]

×
mn∑
j,j′=1

∫
E[gj(X, ϕq)gj′(X, ϕq′)]gj(Xk, ϕq)gj′(Xk′ , ϕq′)d(q, q′)

]
6

C

n4m2
n

∫
E
∣∣∣ mn∑
j,j′=1

E[gj(X, ϕq)gj′(X, ϕq′)]gj(X1, ϕq)gj′(X2, ϕq′)
∣∣∣2d(q, q′)(i−1)(i−2)

6
C

n4mn
(i − 1)(i − 2).
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again using that E[gj(X, ϕq)gj′(X, ϕq′)] is only different from zero whenever j = j′. Conse-
quently, we obtain∑

i<i′

EDii′ 6
C

n4mn

∑
i<i′

(i− 1)(i− 2) =
C n(n− 1)(n− 2)(n− 3)

mnn4
= o(1)

and hence 2
∑

i<i′ EQ2
niQ

2
ni′ = 1 + o(1).

Proof of (A.10). Note that P
(

supi>1 |Qni| > ε
)
6
∑n

i=1 P
(
Q2
ni > ε2

)
and, hence the

assertion follows from the Markov inequality.
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