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Abstract

In this paper, we suggest and analyze a new class of specification tests for random

coefficient models. These tests allow to assess the validity of central structural features

of the model, in particular linearity in coefficients, generalizations of this notion like a

known nonlinear functional relationship, or degeneracy of the distribution of a random

coefficient, i.e., whether a coefficient is fixed or random, including whether an associated

variable can be omitted altogether. Our tests are nonparametric in nature, and use sieve

estimators of the characteristic function. We provide formal power analysis against global

as well as against local alternatives. Moreover, we perform a Monte Carlo simulation

study, and apply the tests to analyze the degree of nonlinearity in a heterogeneous random

coefficients demand model. While we find some evidence against the popular QUAIDS

specification with random coefficients, it is not strong enough to reject the specification

at the conventional significance level.

Keywords: Nonparametric, specification, testing, random coefficients, unobserved hetero-

geneity, sieve estimation, characteristic function, consumer demand.

1 Introduction

Heterogeneity of individual agents is now widely believed to be an important - if not the

most important - source of unobserved variation in a typical microeconometric application.
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Increasingly, the focus of econometrics shifts towards explicitly modeling this central feature

of the model through random parameters, as opposed to searching for fixed parameters that

summarize only, say, the mean effect. However, as always when additional features are being

introduced, this step increases the risk of model misspecification and therefore introducing

bias. This suggests to use all the information available in the data to assess the validity of the

chosen specification through a test before performing the main analysis. A second important

feature of a specification test is that we may be able to find a restricted model that is easier

to implement than the unrestricted one. This feature is particularly important in models of

complex heterogeneity1, which are generically only weakly identified and therefore estimable

only under great difficulties.

This paper proposes a family of nonparametric specification tests in models with complex

heterogeneity. We focus on the important class of random coefficient models, i.e., models in

which there is a finite (db dimensional) vector of continuously distributed and heterogeneous

parameters B ∈ Rdb , and a known structural function g which relates these coefficients as well

as a dx dimensional vector of observable explanatory variables X to a continuous dependent

variable Y , i.e.,

Y = g(X,B). (1.1)

Throughout this paper, we assume that X is independent of B (however, as we discuss

below, this does not preclude extensions where some variables in the system are endogenous).

The leading example in this class of models is the linear random coefficient model, where

g(X,B) = X ′B, but we also propose specification tests in models where g is nonlinear. Indeed,

in extensions we also consider the case where Y is binary, and/or where Y is a vector.

The simple linear model with independent random coefficients is well suited to illustrate our

contribution and to explain the most important features of such a nonparametric specification

test. Despite the fact that in this model there is a one-to-one mapping from the conditional

probability density function of the observable variables fY |X to the density of random coefficients

fB such that the true density of random coefficients is associated with exactly one density of

observables (see, e.g., Beran et al. [1996] and Hoderlein et al. [2010]), the model imposes

structure that can be used to assess the validity of the specification. For instance, in the very

same model, the conditional expectation is linear, i.e., E[Y |X] = b0 + b1X1 + ...+ bkXk, where

bj = E[Bj]. This means that a standard linear model specification test for quadratic terms in

X, or, somewhat more elaborate, nonparametric specification tests involving a nonparametric

regression as alternative could be used to test the specification. Similarly, in this model the

conditional skedastic function is at most quadratic in X, so any evidence of higher order terms

1We refer to models with several unobservables, e.g., random coefficients models, nonseparable models,
treatment effects etc, as (models with) “complex heterogeneity”.
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can again be taken as rejection of this linear random coefficients specification. However, both

of these tests do not use the entire distribution of the data, and hence do not allow us to discern

between the truth and certain alternatives.

In contrast, our test will be based on the characteristic function of the data, i.e., we use

the entire distribution of the data to assess the validity of the specification. In the example

of the linear model, we compare the distance between a series least squares estimator of the

unrestricted characteristic function E[exp(itY )|X], and an estimator of the restricted one, which

is E[exp(it(X ′B))|X] =
∫

exp(it(X ′b))fB(b)db, where the probability density function fB of the

random coefficients B is replaced by a sieve minimum distance estimator under the hypothesis

of linearity. More specifically, using the notation ε(X, t) = E[exp(itY )− exp(it(X ′B))|X], our

test is based on the observation that under the null hypothesis of linearity, ε(X, t) = 0 holds,

or equivalently, ∫
E
[
|ε(X, t)|2

]
$(t)dt = 0,

for any strictly positive integrable weighting function $, which is not required to be a pdf and

whose choice is discussed in the simulation section.2 Our test statistic is then given by the

sample counterpart

Sn ≡ n−1

n∑
j=1

∫
|ε̂n(Xj, t)|2$(t)dt,

where ε̂n denotes an estimator of ε as described above. We reject the null hypothesis of linearity

if the statistic Sn becomes too large.

This test uses evidently the entire distribution of the data to assess the validity of the spec-

ification. It therefore implicitly uses all available comparisons between the restricted and the

unrestricted model, not just the ones between, say a linear conditional mean and a nonpara-

metric conditional mean. Moreover, it does not even require that these conditional means (or

higher order moments) exist. To see that our test uses the information contained in the condi-

tional moments, consider again the linear random coefficients model. Using a series expansion

of the exponential function, ε(X, t) = 0 is equivalent to

∞∑
l=0

(it)l
{
E[Y l|X]− E[(X ′B)l|X]

}
/(l!) = 0,

provided all moments exist. This equation holds true, if and only if, for every coefficient l ≥ 1 :

E[Y l|X] = E[(X ′B)l|X],

2This type of weighting is standard in the literature, see the weighted L2 test statistic by Su and White
[2007], or the empirical likelihood test proposed by Chen et al. [2013]. For a complex number z ∈ C the absolute
value is given by |z| =

√
zz̄.
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i.e., there is equality of all of these conditional moments. This implies, in particular, the first

and second conditional moment equation E[Y |X] = X ′E[B] and E[Y 2|X] = X ′E[BB′]X. As

such, our test exploits potential discrepancies in any of the conditional moments, and works

even if some or all of them do not exist.

Our test is consistent against a misspecification of model (1.1) in the sense that, under the

alternative, there exists no vector of random coefficients B satisfying the model equation (1.1)

for a known function g. Indeed, such a misspecification leads to a deviation of the unrestricted

from the restricted conditional characteristic function. Moreover, our test is also consistent

against certain specific other alternatives, e.g., if the null is the linear random coefficient model

and the alternative is a higher order polynomial with random parameters.

However, we can also use the same testing principle to analyze whether or not a parameter is

nonrandom, which usually allows for a
√
n consistent estimator for this parameter, and whether

it has in addition mean zero which implies that we may omit the respective variable altogether.

This is important, because from a nonparametric identification perspective random coefficient

models are weakly identified (i.e., stem from the resolution of an ill posed inverse problem), a

feature that substantially complicates nonparametric estimation3.

Another key insight in this paper is that testing is possible even if the density of random

coefficients is not point identified under the null hypothesis. This is important, because many

structural models are not linear in an index. As such, it is either clear that they are not

point identified in general and at best set identified (see Hoderlein et al. [2014], for such an

example), or identification is unknown. To give an example of such a model that we will pursue

in the application, consider a single cross section of the workhorse QUAIDS model of consumer

demand (Banks et al. [1997]). Note that in a cross section prices often do not vary (or only

very minimally, see, e.g., the commonly used British FES data), and the demand model for a

good Y, in our example food at home, is therefore defined through:

Y = B0 +B1X +B2X
2,

where Bj denotes parameters, and X log total expenditure. For reasons outlined in Masten

[2015], the joint density of random parameters B0, B1, B2 is not point identified in general. Our

strategy is now to solve a functional minimization problem that minimizes a similar distance as

outlined above between restricted and unrestricted model, and allows us to obtain one element

in this set as minimizer. If the distance between the restricted model and the unrestricted model

is larger than zero, we conclude that we can reject the null that the model is, in our example, a

heterogeneous QUAIDS. However, if the distance is not significantly different from zero, there

3In a nonparametric sense, there is a stronger curse of dimensionality associated with random coefficient
models than with nonparametric density estimation problems (see, e.g., Hoderlein et al. [2010]).
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still may be other non-QUAIDS models which achieve zero distance, and which we therefore

cannot distinguish from the heterogeneous QUAIDS model. As such, in the partially identified

case we do not have power against all possible alternatives, and our test becomes conservative.

In contrast, our test has power against certain alternatives even if our model is not identified

under the null hypothesis. As an example, in the application we consider testing the random

coefficients QUAIDS model against higher order polynomials; in this case, ε(X, t) = 0 for all

t implies that, e.g., the cubic model Y = B̃0 + XB̃1 + X2B̃2 + X3B̃3 with random coefficients

(B̃0, B̃1, B̃2, B̃3) is misspecified4.

Finally, we may extend the approach outlined in this paper to binary or discrete depen-

dent variables, provided we have a special regressor Z, as in Lewbel [2000], and to systems of

equations, see section 3 as well as an additional online appendix, see Breunig and Hoderlein

[2017].

Related Literature. As already mentioned, this paper draws upon several literatures. The

first is nonparametric random coefficients models, a recently quite active line of work, including

work on the linear model (Beran and Hall [1992], Beran et al. [1996], and Hoderlein et al. [2010]),

the binary choice model (Ichimura and Thompson [1998] and Gautier and Kitamura [2013]),

and the treatment effects model (Gautier and Hoderlein [2015]). Related is also the wider

class of models analyzed in Fox and Gandhi [2009] and Lewbel and Pendakur [2013], who both

analyze nonlinear random coefficient models, Masten [2015] and Matzkin [2012], who both

discuss identification of random coefficients in a simultaneous equation model, Hoderlein et al.

[2014] who analyze a triangular random coefficients model, and Dunker et al. [2013] and Fox

and Lazzati [2012] who analyze games.

As far as we know, the general type of specification tests we propose in this paper is new

to the literature. In linear semiparametric random coefficient models, Beran [1993] proposes a

minimum distance estimator for the unknown distributional parameter of the random coefficient

distribution. Within this framework of a parametric joint random coefficients’ distribution,

Beran also proposes goodness of fit testing procedures. Also, in a parametric setup where the

unknown random coefficient distribution follows a parametric model, Swamy [1970] establishes

a test for equivalence of random coefficient across individuals, i.e., a test for degeneracy of

the random coefficient vector. We emphasize that with our testing methodology, despite less

restrictive distributional assumptions, we are able to test degeneracy of a subvector of B while

others are kept as random. Another test in linear parametric random coefficient models was

proposed by Andrews [2001], namely a test for degeneracy of some random coefficients. In

4In addition, our method also applies to other point identified random coefficient models such as models
that are linear in parameters, but where X is replaced by a element-wise transformation of the covariates (i.e.,
Xj is replaced by hj(Xj) with unknown hj . See Gautier and Hoderlein [2015] for the formal argument that
establishes identification).
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contrast, our nonparametric testing procedure is based on detecting differences in conditional

characteristic function representation and, as we illustrate below, we do not obtain boundary

problems as in Andrews [2001].

While our test is the first that uses characteristic functions to test hypotheses about random

coefficients, in other econometric setups tests based on comparing characteristic functions have

been proposed. For instance, Su and White [2007] considered a test of conditional independence,

Chen and Hong [2010] proposed a goodness-of-fit test for multifactor continuous-time Markov

models, and Chen et al. [2013] considered an empirical likelihood test for correct specification

for Markov processes.

In this paper, we use sieve estimators for the unknown distributional elements. In the

econometrics literature, sieve methodology was recently used to construct Wald statistics (see

Chen and Pouzo [2015] and Chen and Pouzo [2012] for sieve minimum distance estimation)

or nonparametric specification tests (see Breunig [2015b]), and, in nonparametric instrumental

regression, tests based on series estimators have been proposed by Horowitz [2012] and Breunig

[2015a]. Moreover, in the nonparametric IV model, tests for parametric specification have been

proposed by Horowitz [2006] and Horowitz and Lee [2009], while Blundell and Horowitz [2007]

proposes a test of exogeneity. Santos [2012] develops hypothesis tests which are robust to a

failure of identification. More generally, there is a large literature on model specification tests

based on nonparametric regression estimators in L2 distance starting with Härdle and Mammen

[1993]. Specification tests in nonseparable models were proposed by Hoderlein et al. [2011]

and Lewbel et al. [2015]. None of these tests is applicable to specification testing in random

coefficient models. Moreover, in contrast to nonparametric specification tests in instrumental

variable models in Horowitz [2012] and Breunig [2015a] who assume bounded support, we

explicitly allow for regressors with large support which is required to ensure identification of

random coefficient models in general. This results in a very different setup as densities have

to be allowed to be close to zero, which leads to slower rates of convergence and rules out the

approach of density weighting considered in Horowitz [2012].

Finally, our motivation is partly driven by consumer demand, where heterogeneity plays an

important role. Other than the large body of work reviewed above we would like to mention

the recent work by Hausman and Newey [2013], Blundell et al. [2010], see Lewbel [1999] for a

review of earlier work.

Overview of Paper. In the second section, we introduce our test formally, and discuss its

large sample properties in the baseline scenario. We distinguish between general specification

tests, and subcases where we can additively separate a part of the model which contains only

covariates and fixed coefficients from the remainder. In the third section, we focus on the exten-

sions discussed above. The finite sample behavior is investigated through a Monte Carlo study
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in the fourth section. Finally, we apply all concepts to analyze the validity of a heterogeneous

QUAIDS (Banks et al. [1997]) model which is the leading parametric specification in consumer

demand.

2 The Test Statistic and its Asymptotic Properties

2.1 Examples of Testable Hypotheses

In the wider class of models encompassed by (1.1), we consider two different types of hypotheses.

First, we provide a general test for the hypothesis that the structural relation between the

covariates, the random coefficients, and the outcome variable coincides with a known function

g. We thus consider the hypothesis 5

Hmod : there exist some distributions of random parameters B such that Y = g(X,B).

The alternative hypothesis is P
(
Y 6= g(X,B) for all distributions of random parameters B

)
>

0. An important example is testing the hypothesis of linearity, i.e., whether with probability

one

Hlin : Y = X ′B,

in which case the distribution of B is point identified. Another example is a quadratic form of

the function g in each component of the vector of covariates X, i.e., we want to assess the null

hypothesis

Hquad : Y = B0 +X ′B1 + (X2)′B2,

for some B = (B0, B1, B2), where the square of the vector X is understood element-wise.

Note that in the latter example the distribution of the random parameters B is only partially

identified. As already discussed above, this fact will generally result in a lack of power against

certain alternatives.

The second type of hypotheses our test allows to consider is whether a subvector of B, say,

B2, is deterministic (or, equivalently, has a degenerate distribution). More specifically, we want

to consider the following hypothesis

Hdeg : B2 = b2 for some distributions of random parameters satisfying (1.1).

The alternative is P
(
B2 6= b2 for all distributions of random parameters B satisfying (1.1)

)
> 0.

5Equalities involving random variables are understood as equalities with probability one, even if we do not
say so explicitly.
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While the hypothesis Hdeg could be considered in more general models, motivated by the linear

(or polynomial) model we will confine ourselves to functions g that are additively separable in

the sense that

Hadd : Y = g1(X,B−2) + g2(X,B2), (2.1)

where g1 and g2 denote two known functions, and we use the notation B−2 = (B0, B
′
1)′. The

leading example for this type of hypothesis is of course when g1 is a linear function of a subvector

X1 of covariates X, in which case we obtain a partially linear structure, i.e.,

Hpart-lin : Y = B0 +X ′1B1 + g2(X,B2), (2.2)

where g2 is a known function. This covers the following examples of hypotheses already outlined

in the introduction: First, in a linear model, i.e., Y = B0 + X ′1B1 + X ′2B2, it allows to test

whether the coefficient on X2 is deterministic, i.e., we may test the null

Hdeg-lin : Y = B0 +X ′1B1 +X ′2b2,

against the alternative that B2 is random. Obviously, in this case b2 is identified by standard

linear mean regression identification conditions. A second example arises if, in the quadratic

model, we want to test a specification with deterministic second order terms, i.e.

Hdeg-quad : Y = B0 +X ′1B1 + (X2
1 )′b2,

against the alternative that B2 is random. Note that in the latter two hypotheses, identification

of b2 follows as in parametric mean regression and, in equation (2.2), point identification under

the null holds for instance if g2(X, b2) = h(X2)′b2 for some vector valued function h such that

the associated rank condition is satisfied. In the Monte Carlo study and the application, we will

only consider the case where b2 is point identified, which we consider to be the leading case.

However, we would like to point out that the test applies also more generally to situations

where b2 does not need to be point identified, as in the most general case defined by hypothesis

Hadd, albeit with a loss of power against some alternatives.

2.2 The Test Statistic

Our test statistic is based on the L2 distance between an unrestricted conditional characteristic

function and a restricted one. We show below that each null hypothesis is then equivalent to

ε(X, t) = 0 for all t, (2.3)
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where ε : Rdx+1 → C is a complex valued, measurable function. Our testing procedure is based

on the L2 distance of ε to zero. Equation (2.3) is equivalent to∫
E
[∣∣ε(X, t)∣∣2]$(t)dt = 0,

for some strictly positive weighting function $ with
∫
$(t)dt <∞. Our test statistic is given

by the sample counterpart to this expression, which is

Sn ≡ n−1

n∑
j=1

∫ ∣∣ε̂n(Xj, t)
∣∣2$(t)dt,

where ε̂n is a consistent estimator of ε. Below, we show that the statistic Sn is (after standard-

ization) asymptotically standard normally distributed. As the test is one sided, we reject the

null hypothesis at level α when the standardized version of Sn is larger than the (1−α)–quantile

of N (0, 1).

We consider a series estimator for the conditional characteristic function of Y given X, i.e.,

ϕ(x, t) ≡ E[exp(itY )|X = x]. To do so, let us introduce a vector of basis functions denoted by

pm(·) = (p1(·), . . . , pm(·))′ for some integer m ≥ 1. Further, let Xm ≡
(
pm(X1), . . . , pm(Xn)

)′
and Yn(t) =

(
exp(itY1), . . . , exp(itYn)

)
. We replace ϕ by the series least squares estimator

ϕ̂n(x, t) ≡ pmn(x)
(
X′mn

Xmn

)−1
X′mn

Yn(t),

where the integer mn increases with sample size n. We compare this unrestricted conditional

expectation estimator to a restricted one which depends on the hypothesis under consideration.

In the following examples, we provide explicit forms for the function ε. The analysis is

based on the assumption of independence of covariates X and random coefficients B. See also

the discussion after Assumption 1 below.

Example 1 (Testing functional form restrictions). The null hypothesis Hmod is equivalent to

the following equation involving conditional characteristic functions

E[exp(itY )|X] =

∫
exp(itg(X, b))fB(b)db,

for each t ∈ R, a known function g, and some random parameters B, with probability density

function (p.d.f.) fB. Hence, equation (2.3) holds true with

ε(X, t) = E[exp(itY )|X]−
∫

exp(itg(X, b))fB(b)db. (2.4)

As already mentioned, if the function g is nonlinear the p.d.f. of random coefficients B is not
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necessarily point identified. On the other side, if g is the inner product of its entries, then (2.3)

holds true with

ε(X, t) = E[exp(itY )|X]−
∫

exp(itX ′b)fB(b)db,

and in this case the distribution of B is point identified (see, e.g., Hoderlein et al. [2010]).

While our test, based on the function ε, is in general consistent against a failure of the null

hypothesis Hmod, it is also consistent against certain alternative models such as higher order

polynomials which are not point identified. To illustrate this, consider testing linearity of the

random coefficient QUAIDS model which is given by Y = B̃0 + B̃1X + B̃2X
2 for random coef-

ficients B̃0, B̃1, and B̃2 (also independent of X). In this case, the conditional first and second

moment equation implied by equation (2.3) yield E[B̃2] = 0 and V ar(B̃2) = 0, respectively. We

thus conclude that B̃2 = 0 with probability one.

Let us introduce the integral transform (Fgf)(X, t) ≡
∫

exp(itg(X, b))f(b)db, which coin-

cides with the Fourier transform evaluated at tX, if g is linear.6 If g is nonlinear, then the

random coefficient’s p.d.f. fB does not need to be identified through ϕ = Fgf . We estimate the

function ε by

ε̂n(Xj, t) = ϕ̂n(Xj, t)− (Fgf̂Bn)(Xj, t),

where the estimator f̂Bn is a sieve minimum distance estimator given by

f̂Bn ∈ arg min
f∈Bn

{ n∑
j=1

∫
|ϕ̂n(Xj, t)− (Fgf)(Xj, t)|2$(t)dt

}
(2.5)

and Bn =
{
φ(·) =

∑kn
l=1 βlql(·)

}
is a linear sieve space of dimension kn <∞ with basis functions

{ql}l≥1. Here, kn and mn increase with sample size n. As we see below, we require that mn

increases faster than kn. Next, using the notation Fn(t) =
(
(Fgqkn)(X1, t), . . . , (Fgqkn)(Xn, t)

)′
,

the minimum norm estimator of fB given in (2.5) coincides with f̂Bn(·) = qkn(·)′β̂n where

β̂n =
(∫

Fn(−t)′Fn(t)$(t)dt
)− ∫

Fn(−t)′Φn(t)$(t)dt

and Φn(t) =
(
ϕ̂n(X1, t), . . . , ϕ̂n(Xn, t)

)′
.7 The exponent “−” denotes the Moore–Penrose gen-

eralized inverse. As a byproduct, we thus extend the minimum distance estimation principle of

Beran and Millar [1994] to nonlinear random coefficient models and the sieve methodology.

6The Fourier transform is given by (Fφ)(t) ≡
∫

exp(itz)φ(z)dz for a function φ ∈ L1(Rd) while its inverse

is (F−1φ̃)(z) ≡ (2π)−d
∫

exp(−itz)φ̃(t)dt. We also make use of (Fgφ)(t) = (Fgφ)(−t) where φ denotes the
complex conjugate of a function φ.

7The integral transform Fg of a vector of functions is always understood element-wise, i.e., (Fgqkn
)(Xj , t) =(

(Fgq1)(Xj , t), . . . , (Fgqkn
)(Xj , t)

)′
.
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Example 2 (Testing degeneracy under the random coefficients specification). In the case of

an additively separable structure Hadd (see equation (2.1)), the null hypothesis Hdeg implies the

equality of conditional characteristic functions, i.e.,

E[exp(itY )|X] =

∫
exp

(
itg1(X, b−2)

)
fB−2(b−2)db−2 exp

(
itg2(X, b2)

)
, (2.6)

for each t ∈ R. Therefore, equation (2.3) holds with

ε(X, t) = E[exp(itY )|X]−
∫

exp
(
itg1(X, b−2)

)
fB−2(b−2)db−2 exp

(
itg2(X, b2)

)
.

Given a partially linear structure Hpart-lin (see equation (2.2)), the null hypothesis Hdeg implies

the equality of conditional characteristic functions, i.e., equation (2.3) holds with

ε(X, t) = E[exp(itY )|X]−
∫

exp(itX ′1b−2)fB−2(b−2)db−2 exp
(
itg2(X, b2)

)
,

where the distribution of the random coefficients is identified. Our test, based on the function

ε, has power against any failure of hypothesis Hdeg if the distribution of the random coefficients

under the maintained hypothesis Hadd is identified, i.e., if g1 and g2 are linear in X1 and X2,

respectively, or element-wise transformations of each component of these vectors (see Gautier

and Hoderlein [2015]).

To illustrate that our test of degeneracy has power in the random coefficient QUAIDS model

Y = B̃0 + B̃1X + B̃2X
2, note that under the null the conditional first and second moment

regressions implied by equation (2.3) already yield that E[B̃2] = b2 and E[B̃2
2 ] = b2

2, respectively.

From this observation we are already in the position to conclude that B̃2 is degenerate with

B̃2 = b2.

We estimate the function ε by

ε̂n(Xj, t) = ϕ̂n(Xj, t)− (Fg1 f̂B−2,n)(Xj, t) exp
(
itg2(Xj, b̂2n)

)
,

where the estimators f̂B−2,n and b̂2n are a sieve minimum distance estimators of the p.d.f. fB−2

and the parameter b2, respectively, given by

(f̂B−2n, b̂2n) ∈ arg min
(f,b)∈B−2,n×B2

{ n∑
j=1

∫ ∣∣ϕ̂n(Xj, t)− (Fg1f)(Xj, t) exp
(
itg2(Xj, b)

)∣∣2$(t)dt
}

(2.7)

and B−2,n =
{
φ(·) =

∑kn
l=1 βlql(·)

}
is a linear sieve space of dimension kn < ∞ with basis

functions {ql}l≥1 of B−2 and B2 is a compact parameter space. See also Ai and Chen [2003]

for sieve minimum distance estimation for finite dimensional parameters and nonparametric
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functions. As in the previous example, kn and mn increase with sample size n, but we require

that mn increases faster than kn.

Example 3 (Testing degeneracy under additive separability alone). We also present an alter-

native test of degeneracy under Hadd (see equation (2.1)) when g1 depends on covariates X1

but not on a subvector X2 of the covariates X = (X ′1, X
′
2)′. In this case, we rely on additive

separability alone and base our test on

E[exp(itY )|X] = E
[

exp
(
it(Y − g2(X, b2)

)∣∣X1

]
exp

(
itg2(X, b2)

)
. (2.8)

Of course, such a test is only reasonable if the sigma algebra generated by X is not contained

in the one generated by X1. This rules out, for instance, testing degeneracy in the random

coefficient QUAIDS model where X is scalar and g2 is a quadratic function of X.

This test would not require any structure on the first term (despite not depending on X2),

i.e., in equation (2.1) we do neither have to know g1, nor would have to assume that B−2 is

finite. In contrast to the setting in Example 2, however, we require b2 to be point identified, which

in the absence of any structure on g1 may be difficult to establish. There are examples where

this structure could be useful. Consider for instance a model which has a complex nonlinear

function in X1, but is linear in X2, i.e., Y = g1(X1, B−2) + X ′2B2, with an unknown function

g1. Suppose a researcher wants to test the null that the random coefficients B2 has a degenerate

distribution. In this case, b2 is identified by a partially linear mean regression model, since

E[Y |X] = µ(X1) + X ′2b2, where µ(X1) = E[g1(X1, B−2)|X1]. Evidently, this test requires less

structure on the way X1 enters, but in return suffers from lower power, e.g., if X1 indeed enters

through a random coefficients specification.

Let b̂2n denote a consistent estimator of the point identified parameter b2. For instance,

under the partially linear structure Hpart-lin (see equation (2.2)), we have the moment restriction

E[Y |X] = b0 + X ′1b1 + g2(X, b2) and thus, b̂2n would coincide with the nonlinear least squares

estimator of b2. We denote pkn(·) = (p1(·), . . . , pkn(·))′ and X1n ≡
(
pkn(X11), . . . , pkn(X1n)

)′
which is a n× kn matrix. Consequently, we estimate the function ε by

ε̂n(Xj, t) = ϕ̂n(Xj, t)− pkn(X1j)
′(X′1nX1n

)−1
X′1nUn exp

(
itg2(Xj, b̂2n)

)
,

where Un =
(

exp(it(Y1 − g2(X1, b̂2n))), . . . , exp(it(Yn − g2(Xn, b̂2n)))
)′

.
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2.3 The Asymptotic Distribution of the Statistic under the Null

Hypothesis

As a consequence of the previous considerations, we distinguish between two main hypotheses,

i.e., functional form restrictions and degeneracy of some random coefficients. Both types of

tests require certain common assumptions, and we start out this section with a subsection

where we discuss the assumptions we require in both cases. Thereafter, we analyze each of the

two types of tests in a separate subsection, and provide additional assumptions to obtain the

test’s asymptotic distribution under each null hypothesis. While it might be possible to treat

both types of hypotheses under an abstract general testing framework, because of transparency

of exposition (at least for applied researchers), we decided to treat both cases separately.

2.3.1 General Assumptions for Inference

Assumption 1. The random vector X is independent of B.

Assumption 1 is crucial for the construction of our test statistic. Full independence is

commonly assumed in the random coefficients literature (see, for instance, Beran [1993], Beran

et al. [1996], Hoderlein et al. [2010], or any of the random coefficient references mentioned in the

introduction). It is worth noting that this assumption can be relaxed by assuming independence

of X and B conditional on additional variables that are available to the econometrician, allowing

for instance for a control function solution to endogeneity as in Hoderlein and Sherman [2015],

or simply controlling for observables in the spirit of the unconfoundedness assumption in the

treatment effects literature. Further, X denotes the support of X.

Assumption 2. (i) We observe a sample ((Y1, X1), . . . , (Yn, Xn)) of independent and identically

distributed (i.i.d.) copies of (Y,X). (ii) There exists a strictly positive and nonincreasing

sequence (λn)n≥1 such that, uniformly in n, the smallest eigenvalue of λ−1
n E[pmn(X)pmn(X)′] is

bounded away from zero. (iii) There exists a constant C ≥ 1 and a sequence of positive integers

(mn)n≥1 satisfying supx∈X ‖pmn(x)‖2 6 Cmn with m2
n log n = o(nλn).

Assumption 2 (ii) − (iii) restricts the magnitude of the approximating functions {pl}l≥1

and imposes nonsingularity of their second moment matrix. Assumption 2 (iii) holds, for

instance, for polynomial splines, Fourier series, wavelet bases, and Hermite functions (which are

orthonormalized Hermite polynomials).8 Moreover, this assumption ensures that the smallest

eigenvalue of E[pmn(X)pmn(X)′] is not too small relative to the dimension mn. In Assumption

2 (ii), we assume that the eigenvalues of the matrix E[pmn(X)pmn(X)′] may tend to zero at

the rate λn which was recently also assumed by Chen and Christensen [2015]. On the other

8When pl are Hermite functions, it holds due to Crámer’s inequality that supx∈X ‖pmn
(x)‖2 6 1.086π−1/4mn.
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hand, the sequence (λn)n≥1 is bounded away from zero if {pl}l≥ forms an orthonormal basis on

the compact support of X and the p.d.f. of X is bounded away from zero (cf. Proposition 2.1

of Belloni et al. [2015]). The next result provides sufficient condition for Assumption 2 (ii) to

hold even if the sequence of eigenvalues (λn)n≥1 tends to zero.

Proposition 1. Assume that {pl}l≥1 forms an orthonormal basis on X with respect to a measure

ν. Let (λn)n≥1 be a sequence that tends to zero. Suppose that, for some constant 0 < c < 1, for

all n ≥ 1 and any vector an ∈ Rmn the inequality∫
(a′npmn(x))2 1 {f(x) < λn}ν(dx) ≤ c

∫
(a′npmn(x))2ν(dx) (2.9)

holds, where f = dFX/dν. Then, Assumption 2 (ii) is satisfied.

Condition (2.9) is violated, for instance, if dFX/dν vanishes on some subset A of the support

of ν with ν(A) > 0. Estimation of conditional expectations with respect to X is more difficult

when the marginal p.d.f. fX is close to zero on the support X . In this case, the rate of

convergence will slow down relative to λn (see Lemma 2.4 in Chen and Christensen [2015] in

case of series estimation). As we see from inequality (2.9), λn plays the role of a truncation

parameter used in kernel estimation of conditional densities to ensure that the denominator is

bounded away from zero.

To derive our test’s asymptotic distribution, we standardize Sn by subtracting the mean

and dividing through a variance which we introduce in the following. Let V ≡ (Y,X), and

denote by δ a complex valued function which is the difference of exp(itY ) and the restricted

conditional characteristic function, i.e., δ(V, t) = exp(itY )− (FgfB)(X, t) in case of Hmod, and

δ(V, t) = exp(itY )−E[exp(it(B0 +X ′1B1))|X1] exp(itg2(X, b2)) in case of Hdeg. Moreover, note

that
∫
E
[
δ(V, t)

∣∣X]$(t)dt = 0 holds.

Definition 1. Denote by Pn = E[pmn(X)pmn(X)′], and define

µmn ≡
∫
E
[
|δ(V, t)|2pmn(X)′P−1

n pmn(X)
]
$(t)dt and

ςmn ≡
(∫ ∫ ∥∥∥P−1/2

n E
[
δ(V, s)δ(V, t)pmn(X) pmn(X)′

]
P−1/2
n

∥∥∥2

F
$(s)$(t)dsdt

)1/2

.

Here, we use the notation φ for the complex conjugate of a function φ, and ‖ · ‖F to

denote the Frobenius norm. Alternatively, we could normalize our test statistic using residuals

exp(itY )−E[exp(itY )|X] rather than δ(V, t). While this alternative procedure leads to accurate

normalization of our test statistic under the null hypothesis, it is not necessarily accurate under

alternative models.
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Assumption 3. There exists some constant C > 0 such that E
[
|
∫
δ(V, t)$(t)dt|2

∣∣X] ≥ C.

Assumption 3 ensures that the conditional variance of
∫
δ(V, t)$(t)dt is uniformly bounded

away from zero. Assumptions of this type are commonly required to obtain asymptotic nor-

mality of series estimators (see Assumption 4 of Newey [1997] or Theorem 4.2 of Belloni et al.

[2015]). As we show in the appendix, Assumption 3 implies ςmn ≥ C
√
mn, see Lemma 5.1.

2.3.2 Testing functional form restrictions

We now present conditions that are sufficient to provide the test’s asymptotic distribution under

the null hypothesis Hmod. To do so, let us introduce the norm ‖φ‖$ =
( ∫

E|φ(X, t)|2$(dt)
)1/2

and the linear sieve space Φn ≡
{
φ : φ(·) =

∑mn

l=1 βlpl(·)
}

. Moreover, ‖ · ‖ and ‖ · ‖∞,

respectively, denote the Euclidean norm and the supremum norm. Let us introduce An =∫
E[(Fgqkn)(X,−t)(Fgqkn)(X, t)′]$(t)dt and its empirical analog Ân = n−1

∫
Fn(−t)′Fn(t)$(t)dt

(see also Example 1). In the following, we introduce a strictly positive, nonincreasing sequence

(τn)n≥1 such that τn‖A−n ‖2 = O(1).

Assumption 4. (i) For any p.d.f. fB satisfying ϕ = FgfB there exists ΠknfB ∈ Bn such

that n‖Fg(ΠknfB − fB)‖2
$ = o(

√
mn). (ii) There exists Πmnϕ ∈ Φn such that n‖Πmnϕ −

ϕ‖2
$ = o(

√
τnmn) and ‖Πmnϕ − ϕ‖∞ = O(1). (iii) It holds kn log n = o(τn

√
mn). (iv) It

holds P
(
rank(An) = rank(Ân)

)
= 1 + o(1). (v) There exists a constant C > 0 such that∑

l≥1

( ∫
Rdb

φ(b)ql(b)db
)2 ≤ C

∫
Rdb

φ2(b)db for all square integrable functions φ.

Assumption 4 (i) is a requirement on the sieve approximation error for all functions fB that

belong to the identified set Ig ≡
{
f : f is a p.d.f. with ϕ = Fgf

}
. This condition ensures that

the bias for estimating any fB in the identified set Ig is asymptotically negligible. In the linear

case, Hermite functions are eigenfunctions of the Fourier transform F and hence, Assumption

4 (i) is equivalent to imposing a sufficiently small approximation error ΠknfB − fB. In the

following, we present primitive conditions when Assumption 4 (i) holds also for any nonlinear

function g and, in particular, is satisfied for, e.g., quadratic functions. We observe that

‖Fg(ΠknfB − fB)‖$ ≤ ‖Fg‖$
∫
Rd

∣∣ΠknfB(b)− fB(b)
∣∣db,
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where we introduced the operator norm given by

‖Fg‖2
$ ≡ sup

φ∈L1(Rdb ),
∫
|φ(b)|db=1

∫
E
∣∣ ∫ exp(itg(X, b))φ(b)db

∣∣2$(t)dt

≤ sup
φ∈L1(Rdb ),

∫
|φ(b)|db=1

∫ ( ∫
|φ(b)|db

)2
$(t)dt

=

∫
$(t)dt,

using that | exp(itg(X, b))| ≤ 1. The sieve approximation error imposed in Assumption 4 (i) is

thus less restrictive than assuming

√
n

∫
Rdb

∣∣ΠknfB(b)− fB(b)
∣∣db = o(

√
mn),

for any fB ∈ Ig. For instance, if fB and its approximation ΠknfB belong to a compact subset

of Rdb and ‖ΠknfB − fB‖∞ = O(k
−s/db
n ), which is satisfied for B-splines or trigonometric basis

functions, we obtain the rate restriction nk
−2s/db
n = o(

√
mn), which imposes a lower bound on

the dimension parameters kn and mn. If in addition τ−1
n = O(1), Assumptions 4 (i) and (iii)

are satisfied if mn ∼ nζ and kn ∼ nκ where db(1 − ζ/2)/(2s) < κ < ζ/2.9 We thus require

ζ > 2db/(2s+db), so s has to increase with dimension db, which reflects a curse of dimensionality.

In this case, Assumption 4 (ii), which determines the sieve approximation error for the function

ϕ, automatically holds if ‖Πmnϕ−ϕ‖$ = O(m
−s/dx
n ) and we may choose κ to balance variance

and bias, i.e., κ = dx/(2s + dx).
10 For further discussion and examples of sieve bases, we refer

to Chen [2007].

Assumption 4 (iii) has the interpretation of an overidentification restriction imposed on

the finite dimensional approximations and requires that there are more moment restriction

(captured by mn) than unknown parameters (captured by the dimension of the sieve space Bn
given by kn).

Assumption 4 (iv) ensures that the sequence of generalized inverse matrices is bounded and

imposes a rank condition. This condition is sufficient and necessary for convergence in proba-

bility of generalized inverses of random matrices with fixed dimension, for further discussions

and sufficient conditions see Andrews [1987] for the comparable case of generalized Wald tests.

Note that Assumption 4 (iv) is more involved than the corresponding assumption in Andrews

(1987) due to increasing dimensions of An. In 4 (iii) we also restrict the dimension of An

determined by kn relative to the size of ‖A−n ‖.
9We use the notation an ∼ bn for cbn ≤ an ≤ Cbn given two constant c, C > 0 and all n ≥ 1.

10This choice of kn corresponds indeed to the optimal smoothing parameter choice in nonparametric random
coefficient model if s = r+ (dx − 1)/2 where r corresponds to the smoothness of fB (see Hoderlein et al. [2010]
in case of kernel density estimation).
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Assumption 4 (v) is satisfied if {ql}l≥1 forms a Riesz basis in L2(Rdb) ≡
{
φ :
∫
Rdb

φ2(s)ds <∞
}

.

The following result establishes asymptotic normality of our standardized test statistic.

Theorem 2.1. Let Assumptions 1–4 hold with δ(V, t) = exp(itY )− (FgfB)(X, t). Then, under

Hmod we obtain

(
√

2ςmn)−1
(
nSn − µmn

) d→ N (0, 1).

Remark 2.1 (Estimation of Critical Values). The asymptotic result of the previous theorem

depends on unknown population quantities. As we see in the following, the critical values can

be easily estimated. We define δn(V, t) = exp(itY )− (Fgf̂Bn)(X, t), and

σn(s, t) =
(
δn(V1, s)δn(V1, t), . . . , δn(Vn, s)δn(Vn, t))

)′
.

We replace µmn and ςmn, respectively, by the estimators

µ̂mn =

∫
tr
((

X′nXn

)−1/2
X′n diag(σn(t, t)) Xn

(
X′nXn

)−1/2
)
$(t)dt

and

ς̂mn =

(∫ ∫ ∥∥∥(X′nXn

)−1/2
X′n diag(σn(s, t)) Xn

(
X′nXn

)−1/2
∥∥∥2

F
$(s)$(t)dsdt

)1/2

.

Proposition 2. Under the conditions of Theorem 2.1, we obtain

ςmn ς̂
−1
mn

= 1 + op(1) and µ̂mn = µmn + op(
√
mn).

The asymptotic distribution of our standardized test statistic remains unchanged if we

replace µmn and ςmn by estimators introduced in the last remark. This is summarized in

following corollary, which follows immediately from Theorem 2.1, Proposition 2, and Lemma

5.1.

Corollary 2.1. Under the conditions of Theorem 2.1, we obtain

(
√

2 ς̂mn)−1
(
nSn − µ̂mn

) d→ N (0, 1).

An alternative way to obtain critical values is the bootstrap which, for testing nonlinear

functionals in nonparametric instrumental regression, was considered by Chen and Pouzo [2015].

In our situation, the critical values can be easily estimated and the finite sample properties of

our testing procedure are promising, thus we do not elaborate bootstrap procedures here. In

the following example, we illustrate our sieve minimum distance approach for estimating fB in

the case of linearity of g.
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Example 4 (Linear Case). Let g be linear and recall that in this case the integral transform Fg
coincides with the Fourier transform F . For the sieve space Bn, we consider as basis functions

Hermite functions given by

ql(x) =
(−1)l√
2ll!
√
π

exp(x2/2)
dl

dxl
exp(−x2).

These functions form an orthonormal basis of L2(R). Hermite functions are also eigenfunctions

of the Fourier transform with

(Fql)(·) =
√

2π (−i)−lql(·).

Let us introduce the notation q̃l(·) ≡ (−i)−lql(·) and Xn(t) =
(
q̃kn(tX1)′, . . . , q̃kn(tXn)′

)′
. Thus,

the estimator of fB given in (2.5) simplifies to f̂Bn(·) = qkn(·)′β̂n where

β̂n = argmin
β∈Rkn

n∑
j=1

∫ ∣∣ϕ̂n(Xj, t)− q̃kn(tXj)
′β
∣∣2$(t)dt. (2.10)

An explicit solution of (2.10) is given by

β̂n =
(∫

Xn(−t)′Xn(t)$(t)dt
)− ∫

Xn(−t)′Φn(t)$(t)dt

where Φn(t) =
(
ϕ̂n(X1, t), . . . , ϕ̂n(Xn, t)

)′
. We emphasize that under the previous assumptions,

the matrix
∫

Xn(−t)′Xn(t)$(t)dt will be nonsingular with probability approaching one.

2.3.3 Testing degeneracy under the random coefficient specification for the model

For testing degeneracy, Theorem 2.1 is not directly applicable as the required sieve approxi-

mation error in Assumption 4 (i) is here not satisfied in general. In contrast, we will impose

an approximation condition on the function g̃(x, t, b) ≡ exp(itg2(x, b)) where b belongs to the

parameter space B2.

Let us introduce a (kn · ln)–dimensional vector valued function χn given by χn(x, t) =

(Fg1qkn)(x, t) ⊗ p̃ln(x, t), where ⊗ denotes the Kronecker product and p̃ln is a ln–dimensional

vector of complex valued basis functions used to approximate g̃(·, ·, b). For instance, if g2(x, b) =

φ(x)ψ(b) then approximation conditions can be easily verified due to g̃(x, t, b) =
∑

l≥0 p̃l(x, t)ψ(b)l

where p̃l(x, t) =
(
itφ(x)

)l
/l!. Let us introduce An =

∫
E[χn(X,−t)χn(X, t)′]$(t)dt and its

empirical analog Ân = n−1
∫ ∑n

j=1 χn(Xj,−t)χn(Xj, t)
′$(t)dt. Recall that B−2,n =

{
φ(b) =∑kn

l=1 βlql(b) for b ∈ Rdb2
}

where db2 denotes the dimension of b2 and let G2,n =
{
φ(x, t) =∑ln

l=1 βlp̃l(x, t)
}

. In the following, we introduce a strictly positive, nonincreasing sequence
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(τn)n≥1 such that τn‖A−n ‖2 = O(1).

Assumption 5. (i) The hypothesis Hadd holds. (ii) The set of parameters b2 satisfying (2.6)

belongs to a compact parameter space B2 ⊂ Rdb2 . (iii) For any b ∈ B2 there exists Πln g̃(·, ·, b) ∈
G2,n satisfying n‖Πln g̃(·, ·, b) − g̃(·, ·, b)‖2

$ = o(
√
mn). (iv) For any p.d.f. fB−2 satisfying (2.6)

there exists ΠknfB−2 ∈ B−2,n such that n‖Fg1(ΠknfB−2 − fB−2)‖2
$ = o(

√
mn). (v) It holds

knln log n = o(τn
√
mn). (vi) It holds P

(
rank(An) = rank(Ân)

)
= 1 + o(1). (vii) There exists a

constant C > 0 such that
∑

l,l′≥1〈Fg1ql · p̃l, φ〉2 ≤ C‖φ‖2
$ for all functions φ with ‖φ‖$ <∞.

Assumption 5 (i) states the maintained hypothesis of an additive structure of g given in

equation (2.1). Assumption 5 (iii) states an asymptotic condition of the sieve approxima-

tion error for g̃(·, ·, b) for any b in the parameter space B2. By doing so, we impose reg-

ularity conditions on the integral transform Fg2 of the Dirac measure at b but not on the

Dirac measure itself. For instance, if again g2(x, b) = φ(x)ψ(b) and p̃l(x, t) =
(
itφ(x)

)l
/l! for

l ≥ 1 then ‖Πln g̃(·, ·, b) − g̃(·, ·, b)‖$ ≤ C/(ln + 1)! for some constant C > 0, provided that

E[φln(X)]ψln(b)
∫
tln$(t)dt is bounded. Assumption 5 (iv) requires an appropriate sieve ap-

proximation error only for any nondegenerate p.d.f. fB−2 satisfying (2.6). This assumption is

a modification of Assumption 4 (i), which does not hold under Hdeg as degenerate distribu-

tions cannot be accurately approximated by basis functions. Assumption 5 (v) restricts the

magnitude of kn also relative to the dimension parameter ln, which is not too restrictive as

the dimension kn is used to approximate a lower dimensional p.d.f. than in Theorem 2.1.

Assumption 5 (vi) and (vii), respectively, are closely related to Assumption 4 (iv) and (v).

Theorem 2.2. Let Assumptions 1–3, 4 (ii), and 5 be satisfied with δ(V, t) = exp(itY ) −
(Fg1fB−2)(X, t) g̃(X, t, b2). Then, under Hdeg we obtain

(
√

2ςmn)−1
(
nSn − µmn

) d→ N (0, 1).

The critical values can be estimated as in Remark 2.1 but where now δn(V, t) = exp(itY )−
(Fg1 f̂B−2n)(X, t) g̃(X, t, b̂2n). The following result shows that, by doing so, the asymptotic

distribution of our standardized test statistic remains unchanged. This corollary follows directly

from Theorem 2.2 and the proof of Proposition 2; hence we omit its proof.

Corollary 2.2. Under the conditions of Theorem 2.2 it holds

(
√

2 ς̂mn)−1
(
nSn − µ̂mn

) d→ N (0, 1).

Remark 2.2 (Comparison to Andrews [2001]). It is instructive to compare our setup and
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results to Andrews [2001], who considers the random coefficient model:

Y = B0 +B1X1 + (b2 + σB̃2)X2,

where E[B0 ·B1|X] = 0, B1 is independent of B̃2, and E[B1|X] = E[B̃2|X] = 0. In this model,

degeneracy of the second random coefficient is equivalent to σ = 0 and degeneracy fails if σ > 0.

So under Hdeg the parameter σ is on the boundary of the maintained hypothesis with σ ∈ [0,∞).

In contrast, we rely in this paper on independence of B to X under the maintained hy-

pothesis. In this case, the hypothesis of degeneracy is equivalent to a conditional characteristic

function equation as explained in Example 2. Such an equivalent characterization is not possible

given the assumptions of Andrews [2001]. This is why in our framework we automatically avoid

the boundary problem that is apparent in Andrews [2001].

2.3.4 Testing degeneracy under additive separability alone

We now establish the asymptotic distribution of our test of degeneracy based on separability

but not full knowledge of g1 (see Example 3). We introduce the function h(·, t) = E[exp(it(Y −
g2(X, b2))|X1 = ·] and a linear sieve space Hn ≡

{
φ : φ(x1) =

∑kn
l=1 βlpl(x1) for x1 ∈ Rdx1

}
where dx1 denotes the dimension of X1. The series least squares estimator of h is denoted

by ĥn(·) = pkn(·)′
(
X′1nX1n

)−1
X′1nUn where Un =

(
exp(it(Y1 − g2(X1, b̂2n))), . . . , exp(it(Yn −

g2(Xn, b̂2n)))
)′

and b̂2n denotes an estimator of b2. Recall the notation g̃(x, t, b) ≡ exp(itg2(x, b))

for b ∈ B2. Below we denote the vector of partial derivatives of g̃ with respect to b by g̃b.

Assumption 6. (i) The hypothesis Hadd holds, where g1 need not to be known except that it

does not depend on X2. (ii) There exists Πknh ∈ Hn such that n‖Πknh− h‖2
$ = o

(√
mn

)
. (iii)

The parameter b2 is point identified and belongs to the interior of a compact parameter space

B2 ⊂ Rdb2 . (iv) There exists an estimator b̂2n such that
√
n(̂b2n − b2) = Op(1) (v) The function

g̃ is partially differentiable with respect to b and
∫
E supb∈B2 ‖g̃b(X, t, b)‖

2$(t)dt < ∞. (vi) It

holds kn = o(
√
mn).

Assumption 6 (ii) determines the required asymptotic behavior of the sieve approximation

bias for estimating h. This condition ensures that the bias for estimating the function h is

asymptotically negligible but does not require undersmoothing of the estimator ĥn. To see

this, let ‖Πknh − h‖$ = O(k
−s/dx1
n ) for some constant s > 0. Assumptions 6 (ii) and (vi)

are satisfied if mn ∼ nζ and kn ∼ nκ where dx1(1 − ζ/2)/(2s) < κ < ζ/2. We thus require

ζ > 2dx1/(2s+ dx1) and we may choose κ to balance variance and bias, i.e., κ = dx1/(2s+ dx1).

In this case, Assumption 4 (ii) automatically holds if ‖Πmnϕ−ϕ‖$ = O(m
−s/dx
n ) and 2dx1 ≥ dx.

Under a partially linear structure Hpart-lin, Assumptions 6 (iv) is automatically satisfied if b̂2n
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coincides with the nonlinear least squares estimator. If g2 is linear, Assumption 6 (iv) holds

true if E‖X‖2 <∞ and
∫
t2$(t)dt <∞.

Theorem 2.3. Let Assumptions 1–3, 4 (ii), and 6 hold, with δ(V, t) = exp(itY )−h(X1, t)g̃(X, t, b2).

Then, under Hdeg we obtain

(
√

2ςmn)−1
(
nSn − µmn

) d→ N (0, 1).

The critical values can be estimated as in Remark 2.1 but where now δn(V, t) = exp(itY )−
ĥn(X1, t) exp(itg2(X, b̂2n)). The following result shows that, by doing so, the asymptotic dis-

tribution of our standardized test statistic remains unchanged. This corollary follows directly

from Theorem 2.3 and the proof of Proposition 2; hence we omit its proof.

Corollary 2.3. Under the conditions of Theorem 2.3 it holds

(
√

2 ς̂mn)−1
(
nSn − µ̂mn

) d→ N (0, 1).

2.4 Consistency against a fixed alternative

In the following, we establish consistency of our test when the difference of restricted and

unrestricted conditional characteristic functions does not vanish for all random parameters B.

In case of testing functional form restrictions, this is equivalent to a failure of the null hypothesis

Hmod, i.e., P
(
Y 6= g(X,B) for all distributions of random parameters B

)
> 0. A deviation

of conditional characteristic functions can be also caused by alternative models with a different

structural function (see Example 1). We only discuss the global power for testing functional

form restrictions here, but the results for testing degeneracy follow analogously (of course, in

this case we have to be more restrictive about the shape of g1 and g2 as discussed in Example

2). The next proposition shows that our test of functional form restrictions has the ability to

reject a failure of the null hypothesis Hmod with probability one as the sample size grows to

infinity.

Proposition 3. Suppose that Hmod is false and let Assumptions 1–4 be satisfied. Consider a

sequence (γn)n≥1 satisfying γn = o(nς−1
mn

). Then, we have

P
(

(
√

2 ς̂mn)−1
(
nSn − µ̂mn

)
> γn

)
= 1 + o(1).

Recall that under Assumption 3 we have ςmn ≥ C
√
mn (see Lemma 5.1). Hence, under

this assumption, the rate requirement γn = o(nς−1
mn

) implies γn = o(n/
√
mn) which implies

γ−1
n = o(1).
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2.5 Asymptotic distribution under local alternatives

We now study the power of our testing procedure against a sequence of linear local alternatives

that tends to zero as the sample size tends to infinity. First, we consider deviations from

the hypothesis of known functional form restriction. Under Hmod, the identified set in the

nonseparable model (1.1) is given by Ig =
{
f : f is a p.d.f. with ϕ = Fgf

}
. We assume that

Ig is not empty and denote by f ∗B the p.d.f. in Ig with minimal norm. We consider the following

sequence of local alternatives

ϕn = Fg
(
f ∗B + ∆

√
ςmn/n

)
, (2.11)

for some function ∆ ∈ L1(Rdb)∩L2(Rdb). Here, we assume that ∆ is such that f ∗B + ∆
√
ςmn/n

does not belong to the identified set Ig and need not to be a density. We also note that the

p.d.f. f ∗B coincides with the minimal norm solution of ‖ϕn−Fgf‖$ as n tends to infinity. The

next result establishes asymptotic normality under (2.11) of the standardized test statistic Sn

for testing functional form restrictions.

Proposition 4. Let the assumptions of Theorem 2.1 be satisfied. Then, under (2.11) we obtain

(
√

2 ς̂mn)−1
(
nSn − µ̂mn

) d→ N
(

2−1/2‖Fg∆‖2
$, 1
)
.

As we see from Proposition 4, our test can detect linear alternatives at the rate
√
ςmn/n.

Results for testing degeneracy follow similarly. In the following, we thus study deviations from

the hypothesis of degeneracy only under the maintained hypothesis Hlin : Y = B0 + B′1X1 +

B′2X2. Under the maintained hypothesis of linearity, any deviation between the conditional

characteristic functions is equivalent to a failure of a degeneracy of the random coefficients B2.

Let us denote Bdeg ≡ (B1, b2) with associated p.d.f. fBdeg
. We consider the following sequence

of linear local alternatives

fBn = fBdeg
+ ∆

√
ςmn/n, (2.12)

for some density function ∆ ∈ L1(Rdb) ∩ L2(Rdb) which is not degenerate at b2. Applying the

Fourier transform to equation (2.12) yields

E[exp(itX ′B)|X] = E[exp(it(B0 +X ′1B1))|X] exp(itX ′2b2) +

∫
exp(itX ′s)∆(s)ds

√
ςmn/n.

The next result establishes asymptotic normality under (2.12) for the standardized test statis-

tic Sn for testing degeneracy. This corollary follows by similar arguments used to establish

Proposition 4 and hence we omit the proof.
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Corollary 2.4. Let the assumptions of Theorem 2.3 be satisfied. Then, under (2.12) we obtain

(
√

2 ς̂mn)−1
(
nSn − µ̂mn

) d→ N
(

2−1/2‖F∆‖2
$, 1
)
.

3 Monte Carlo Experiments

In this section, we study the finite-sample performance of our test by presenting the results

of a Monte Carlo simulation study. The experiments use a sample size of 500 and there are

1000 Monte Carlo replications in each experiment. As throughout the paper, we structure this

section again in a part related to testing functional form restrictions, and a part related to

testing degeneracy.

3.1 Testing Functional Form Restrictions

In each experiment, we generate realizations of regressors X from X ∼ N (0, 2) and random

coefficients B = (B1, B2)′ from B ∼ N (0, A) where

A =

(
1 1/2

1/2 1

)
.

We simulate a random intercept B0 ⊥ (B1, B2) according to the standard normal distribution.

Realizations of the dependent variable Y are generated either by the linear model

Y = ηB0 +XB1, (3.1)

the quadratic model

Y = c1(ηB0 +XB1 +X2B2), (3.2)

or the nonlinear model

Y = c2(ηB0 +XB1 +
√
|X|B2), (3.3)

where the constant η is either 0.7 or 1. Here, the normalization constants c1 and c2 ensure that

the dependent variables in models (3.1)–(3.3) have the same variance.11 Note that the random

coefficient density fB is neither point identified in model (3.2) nor in model (3.3). However,

recall that even if the model is not point identified under the maintained hypothesis, our testing

procedure may still be able to detect certain failures of the null hypothesis, in particular if they

arise from differences in conditional moments. Consider, for example, testing linearity in the

11This normalization ensures that large empirical rejection probabilities are not only driven by a large variance
of the alternative models (see, for instance, Blundell and Horowitz [2007]).
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heterogeneous QUAIDS model (3.2), where the first two conditional moments yield E[B2] = 0

and V ar(B2) = 0. Consequently, P
( ∫
|ε(X, t)|2$(t)dt 6= 0

)
> 0 if and only if P (B2 6= 0) > 0.

In the finite sample experiment, we also observe that our testing procedure is able to detect

such deviations.

rows Null Model Alt. Model η kn Empirical Rejection probabilities using

Hmod True DGP mn = 8 mn = 12 mn = 16

1 (3.1) 0.7 5 0.041 0.006 0.004

2 (3.2) 7 0.120 0.063 0.020

3 (3.1) (3.2) 5 0.958 0.727 0.561

4 (3.1) (3.3) 0.645 0.233 0.129

5 (3.2) (3.1) 7 0.935 0.780 0.558

6 (3.2) (3.3) 0.990 0.903 0.734

7 (3.1) 1 5 0.093 0.014 0.002

8 (3.2) 7 0.290 0.120 0.051

9 (3.1) (3.2) 5 0.876 0.513 0.327

10 (3.1) (3.3) 0.550 0.146 0.053

11 (3.2) (3.1) 7 0.994 0.952 0.837

12 (3.2) (3.3) 0.996 0.966 0.866

13 (3.1) 0.7 6 0.019 0.003 0.001

14 (3.2) 9 0.140 0.049 0.023

15 (3.1) (3.2) 6 0.887 0.539 0.313

16 (3.1) (3.3) 0.524 0.161 0.064

17 (3.2) (3.1) 9 0.938 0.778 0.581

18 (3.2) (3.3) 0.986 0.893 0.756

19 (3.1) 1 6 0.042 0.004 0.003

20 (3.2) 9 0.292 0.103 0.042

21 (3.1) (3.2) 6 0.847 0.465 0.261

22 (3.1) (3.3) 0.364 0.085 0.037

23 (3.2) (3.1) 9 0.991 0.952 0.833

24 (3.2) (3.3) 0.994 0.957 0.859

Table 1: Rows 1,2,7,8, 13, 14, 19, 20 depict the empirical rejection probabilities if Hmod holds
true, the rows 3–6, 9–12, 15–18, 21–24 show the finite sample power of our tests against various
alternatives. The first column states the null model while the second shows the alternative model
and is left empty if the null model is the correct model. Column 3 specifies the noise level of
the data generating process. Column 4 depicts the values of the varying dimension parameters
kn. Columns 5–7 depict the empirical rejection probabilities for the nominal level 0.05.

The test is implemented using Hermite functions, and uses the standardization described

in Remark 2.1. When (3.1) is the true model, we estimate the random coefficient density
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as described in Example 4, where we make use of the fact that the Hermite functions are

eigenfunctions of the Fourier transform. If (3.2) is the true model, the integral transform Fg
is computed using numerical integration. In both cases, the weighting function $ is given

by the standard normal p.d.f., following Su and White [2007] and Chen and Hong [2010],

or following Chen et al. [2013] by the uniform p.d.f. with support [−2, 2]. We also tried

different weighting functions and found, similarly to Chen and Hong [2010], that the results

of our finite sample analysis are not sensitive when these functions have support on the whole

real line. For finite support weight functions the results are equally sensitive and thus we

report the empirical rejection probabilities of our tests using the uniform weights only in the

Supplementary Material.

Our test statistic is implemented using a varying number of Hermite functions to analyze

its sensitivity to that dimension parameter choice. If (3.1) is the correct model, we use either

kn = 5 (= 3 + 2) or kn = 6 (= 3 + 3) Hermite functions to estimate the density of the bivariate

random coefficients (B0, B1). If (3.2) is the correct model, we have an additional dimension

which accounts for the nonlinear part. Here, the choice of Hermite basis functions is either

kn = 7 (= 3 + 2 · 2) or kn = 9 (= 3 + 2 · 3). In both cases we vary the dimension parameter mn

between 8, 12, and 16.

The empirical rejection probabilities of our tests are shown in Table 1 at the nominal level

0.05. We also note that the models are normalized and hence, the null and alternative have

the same variance. The differences between the nominal and empirical rejection probabilities,

under the correct functional form restrictions, is accurate for mn = 8 if the linear model is the

correct model (see rows 1, 7, 13, and 19) while for the correct quadratic model we require a

large value of mn to obtain accurate finite sample coverage (see rows 2, 8, 14, and 20). This is

not surprising but in line with our theory, where we require mn to be larger than kn and the

quadratic model requires a larger choice of kn.

From Table 1 we see that the empirical rejections probabilities become larger as the param-

eter η increases. On the other hand, we observe from this table that our tests have power to

detect nonlinear alternatives even in cases where the model under the maintained hypothesis

is not identified. This is in line with our observation that these alternatives imply deviations

between the restricted and unrestricted characteristic functions. Comparing rows 3, 9 with 4,

10 in Table 1, we observe that our test rejects the quadratic model (3.2) more often than the

nonlinear model (3.3). From rows 5, 11 and 6, 12 we see that our test rejects the nonlinear

model (3.3) slightly more often than the linear model (3.1).

Note that mn could be any integer larger than const. × k2
n that is smaller than n1/2 (up

to logs). The range of admissible dimension parameters for this minimization-maximization

routine reflects the dimension restrictions imposed in Theorem 2.1 and the consistency results
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thereafter, i.e., m2
n log n = o(n) and kn = o(

√
mn).12 From Table 1 we see that the condition

kn = o(
√
mn) might be too restrictive in finite samples when Hermite functions are used.13 We

thus modify the range of possible dimension parameters to ensure accurate finite sample cover-

age. I.e., if s(kn,mn) denotes the value of the test statistic, a guideline for parameter choice in

practice is given by the minimum-maximum principle min1≤kn<2n1/4 maxkn<mn<
√
n {s(kn,mn)}.

The intuition behind this criterion is that we choose kn to have a good model fit and to choose

mn such that the finite sample power of the test statistic is maximized. For instance, as we see

from Table 1, if η = 1 and (3.1) is the correct model, the principle yields kn = 6 and mn = 8

which implies an empirical rejection probability of 0.042 (see row 19). The minimum-maximum

principle also ensures that kn is always smaller than mn and thus precludes inaccurate finite

sample coverage in the quadratic model due to too small mn as we see in rows 2, 8, 14, and 20.

For instance, if η = 0.7 and (3.2) is the true model the principle yields kn = 9 and mn = 12

leading to the empirical rejection probability of 0.049 (see row 14). Yet for larger values of η,

i.e. if η = 1 and (3.2) is the true model, the principle yields again kn = 9 and mn = 12 leading

to the empirical rejection probability of 0.103. Thus, the testing procedure works generally well

but leads in some cases to overrejection (see row 20).

When we consider different data generating processes, such as a cubic polynomial with

random coefficients, we find that our test of linearity leads to empirical rejection probabilities

which are close to one for all nominal levels considered. Hence, these results are not reported

here. Regarding consistency of the test statistic, we conduct experiments with increasing sample

sizes. We find a slight tendency of our test statistic to under-reject for small η, see in Table 1

in rows 1, 2, 13, and 14. However, this under-rejection diminishes as we increase the sample

size to n = 1000. Not surprisingly, when n = 1000 also the empirical rejection probabilities in

in alternative models increase.

Recommendation on choice of tuning parameters. In the following, based on the the-

oretical results and the Monte Carlo investigation we provide a recommendation on the choice

of weighting function and dimension parameters to implement the test in practice.

• Concerning the weighting function $, choosing a standard normal p.d.f. performs well

in many different settings, and should probably be considered as a benchmark. However,

the results in the simulation section suggest that the choice of weighting is immaterial,

as the results do not appear to be sensitive.

• In contrast, the test appears to be significantly more sensitive to the choice of dimension

12For simplicity, we assume here the the minimal eigenvalues of the associated matrices are uniformly bounded
away from zero.

13This rate requirement is not too restrictive for B-spline basis functions as we see below.
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parameters kn and mn. In particular, the test appears more sensitive to the choice of

kn than to the choice of mn. We recommend to choose the dimension parameters kn and

mn according to the minimum-maximum principle as proposed above, i.e., choose mn to

maximize the finite sample power of the test, and kn to minimize the specification error.

3.2 Testing Degeneracy

In each experiment, we generate realizations of X from X ∼ N (0, A) and random coefficients

B = (B1, B2)′ from B ∼ N (0, Aρ), where

A =

(
1 0.5

0.5 1

)
and Aρ =

(
2 ρ

ρ 2

)
,

for some constant ρ > 0, which varies in the experiments. Further, we generate the dependent

variable Y either as

Y = 0.25 ·Bκ
2 +Bκ

1X1 +X2,

if the null hypothesis Hdeg holds, where the constant κ is either 1 or 2 in the experiments below.

For the alternative, we generate the dependent variable Y using

Y = 0.25 ·Bκ
2 +Bκ

1X1 + ηBκ
2X2,

for some constants η > 0, and κ which vary in the simulations below.

The test is implemented as described in Example 2 with B–splines, and uses the standard-

ization described in Remark 2.1 with δn(V, t) = exp(itY ) − ĥn(X1, t) exp(itg2(X, b̂2n)). This

means that we use the more general test that allows for a nearly arbitrary specification in the

remaining model Y − g2(X2, b2). We focus in the simulation on this specification, because it

has arguably less power than the more specific one that imposes in addition the linear random

coefficients structure. However, as will be evident from the results below, this test already has

very good power properties, implying that separating the term involving the fixed coefficient

turns out to already be a powerful device in testing. To estimate the restricted conditional

characteristic function, we use B–splines of order 2 with one or two knots (hence, kn = 4 or

kn = 5), and for the unrestricted one a tensor-product of these B–spline basis functions (hence,

mn = 16, mn = 20, or mn = 25). We do not consider larger values for kn, because we want to

ensure the requirement k2
n ≤ mn, see also the minimum maximum principle below.

The empirical rejection probabilities for testing degeneracy are shown in Table 2 at the

nominal level 0.05. Again we normalize the models to ensure that the null and alternative have
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rows Alt. Model Empirical Rejection probabilities using Andrews’

κ ρ η kn = 4 kn = 5 Test

mn = 16 mn = 20 mn = 20 mn = 25

1 1 1 0.053 0.016 0.017 0.003 0.060

2 0.3 0.184 0.135 0.009 0.009 0.974

3 0.5 0.489 0.419 0.107 0.076 0.999

4 0.7 0.783 0.709 0.400 0.344 1.000

5 1.5 0.110 0.019 0.018 0.003 0.070

6 0.3 0.352 0.269 0.032 0.024 0.976

7 0.5 0.760 0.691 0.291 0.229 1.000

8 0.7 0.953 0.946 0.692 0.660 1.000

9 2 1 0.102 0.050 0.058 0.032 0.220

10 0.3 0.461 0.389 0.344 0.335 0.822

11 0.5 0.852 0.810 0.786 0.756 0.983

12 0.7 0.984 0.969 0.970 0.945 0.996

13 1.5 0.178 0.083 0.103 0.046 0.190

14 0.3 0.601 0.507 0.512 0.448 0.801

15 0.5 0.925 0.890 0.894 0.865 0.984

16 0.7 0.995 0.991 0.991 0.978 1.000

Table 2: The first row depicts the empirical rejection probabilities under degeneracy of the
coefficient of X2, the rows 2–4, 6–8, 10–12, and 14–16 show the finite sample power of our
tests against various alternatives. Column 1 depicts the value of κ in the correct and alternative
models. Column 2 specifies the covariance of B1 and B2 for the alternative models. Column 3
depicts the value of η in the correct model and is empty if the null model is correct. Columns
4–7 depict the empirical rejection probabilities for the nominal level 0.05. Column 8 depicts the
empirical rejection probabilities using the quasi-likelihood ratio test proposed by Andrews [2001].

the same variance. The differences between the nominal and empirical rejection probabilities

are small under a fixed coefficient for X2, as is obvious from the first row. In Table 2, we

also see from rows 2–4, 6–8, 10–12, and 14–16 that our test rejects the alternative model more

often for a larger variance of B2, as we expect. Moreover, the empirical rejection probabilities

increase as the covariance of B1 and B2 becomes larger, as we see by comparing rows 2–4 with

6–8 and 10–12 with 14–16.

In case of B-spline basis functions we need to be less restrictive regarding the size of

the dimension parameters and recommend the following criterion. Again if s(kn,mn) de-

notes the value of the test statistic, we consider the modified minimum-maximum principle

min1≤kn<2n1/4 maxk2n≤mn<2
√
n {s(kn,mn)}. For instance, as we see from Table 2, if κ = 2, ρ = 1

and B2 is deterministic, this principle yields kn = 5 and mn = 20 which implies an empirical

rejection probability of 0.058 (see row 9). Yet when ρ is larger, i.e., ρ = 1.5 and again κ = 2,
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the minimum-maximum principle leads an empirical rejection probability of 0.103 and thus,

the testing procedure leads occasionally to overrejection.

In Table 2, we compare our testing procedure to the quasi-likelihood ratio test proposed by

Andrews [2001]. In both settings, conditional mean independence of random slope and intercept

parameters is violated. We see that this violation of Andrews [2001] framework leads inaccurate

empirical rejection probabilities, in particular, in the second case. We see that for κ = 1, the

quasi-likelihood ratio test of Andrews [2001] is more powerful than the normalized statistic Sn.

When κ = 2, however, the statistic of Andrews has inaccurate finite sample coverage, see rows

9 and 13, due to misspecification.

Recommendation on choice of tuning parameters. In the following, based on the the-

oretical results and the Monte Carlo investigation we provide a recommendation on the choice

of weighting function and dimension parameters to implement the test in practice.

• As above we recommend choosing the weighting function $ to be the standard normal

p.d.f.

• In contrast, the test appears to be significantly more sensitive to the choice of dimension

parameters kn and mn. In particular, the test appears more sensitive to the choice of kn

than to the choice of mn. We recommend to choose the dimension parameters kn and mn

according to the modified minimum-maximum principle as proposed above, i.e., choose

mn to maximize the finite sample power of the test, and kn to minimize the specification

error.

4 Application

4.1 Motivation: Consumer Demand

Heterogeneity plays an important role in classical consumer demand. The most popular class of

parametric demand systems is the almost ideal (AI) class, pioneered by Deaton and Muellbauer

[1980]. In the AI model, instead of quantities budget shares are being considered and they are

being explained by log prices and log total expenditure14. The model is linear in log prices

and a term that involves log total expenditure over a nonlinear price index that depends on

parameters of the utility function. In applications, one frequent shortcut is to replace this

utility dependent price index by a conventional price index (e.g., Laspeyres), another is that

14The use of total expenditure as wealth concept is standard practice in the demand literature and, assuming
the existence of preferences, is satisfied under an assumption of separability of the labor supply from the
consumer demand decision, see Lewbel [1999].
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homogeneity of degree zero is imposed, which means that all prices and total expenditure are

relative to a price index, resulting in an entirely linear model.

A popular extension of this model allows for quadratic terms in total expenditure (QUAIDS,

Banks et al. [1997]). Since we focus in this paper on the budget share for food at home (BSF ),

which, due at least in parts to satiation effects, is often documented to decline steadily across

the total expenditure range, we want to assess whether quadratic terms are really necessary.

Note that prices enter the quadratic term in a nonlinear fashion, however, due to the fact that

we have very limited price variation, we can treat the nonlinear expression involving prices as

fixed. This justifies the use of real total expenditure as regressor, even in the quadratic term.

In other words, we thus consider an Engel curve QUAIDS model. However, we want to allow

for preference heterogeneity, and hence consider the following model:

BSFi = B0i +B1i log(TotExpi) +B2i

(
log(TotExpi)

)2
+ b4W1i + b5W2i. (4.1)

Unobserved heterogeneity is reflected in the three random coefficients B0i, B1i and B2i. To

account for observed heterogeneity in preferences, we include in addition household covariates

as regressors. Specifically, we use principal components to reduce the vector of remaining

household characteristics to a few orthogonal, approximately continuous components. We only

use two principal components, denoted W1i and W2i. These principal components are obtained

through two different linear combinations of the original covariates Si, i.e., W1i = λ′1Si and

W2i = λ′2Si, where λ1, λ2 are the first two loadings, and are computed using the R command

princomp. While including additional controls in this form is arguably ad hoc, we perform

some robustness checks like alternating the component or adding several others, and the results

do not change appreciably. Moreover, the additive specification can be justified as letting the

mean of the random intercept B0i depend on covariates.

We implement the test statistics as described in the Monte Carlo section. For testing

degeneracy, we estimate the conditional characteristic functions as described in Example 3.

For testing functional form restrictions, our test is implemented as described in Example 1,

where in the linear case we employ the estimation procedure in Example 4. In both cases, we

choose the dimension parameters kn and mn by the minimum-maximum principle explained in

the Monte Carlo section.

4.2 The Data: The British Family Expenditure Survey

The FES reports a yearly cross section of labor income, expenditures, demographic composition,

and other characteristics of about 7,000 households. We use years 2008 and 2009. As is standard

in the demand system literature, we focus on the subpopulation of two person households where
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both are adults, at least one is working, and the head of household is a white collar worker.

This is to reduce the impact of measurement error; see Lewbel [1999] for a discussion. We thus

have a sample of size 543, which is similar to the one considered in the Monte Carlo section.

We form several expenditure categories, but focus on the food at home category. This

category contains all food expenditure spent for consumption at home; it is broad since more

detailed accounts suffer from infrequent purchases (the recording period is 14 days) and are

thus often underreported. Food consumption accounts for roughly 20% of total expenditure.

Results actually displayed were generated by considering consumption of food versus nonfood

items. We removed outliers by excluding the upper and lower 2.5% of the population in the

three groups. We form food budget shares by dividing the expenditures for all food items by

total expenditures, as is standard in consumer demand. The following table provides summary

statistics of the economically important variables. Since the data are similar to the data used

in Hoderlein (2011), for brevity of exposition we refer to this paper for additional descriptive

statistics, especially regarding household covariates.

Min. 1st Qu. Median Mean 3rd Qu. Max. St. Dev.

Food share 0.003 0.129 0.178 0.189 0.239 0.591 0.084
log(TotExp) 3.867 5.463 5.748 5.752 6.058 6.911 0.468

4.3 Results

For testing degeneracy of the coefficient B2, we estimate the coefficient under Hdeg, i.e., we

assume that this coefficient is fixed. The ordinary least squares estimate is−0.009 with standard

error 0.008, which means that mean effects are rather insignificant. A potential role of the

nonlinear term more generally is, however, picked up by our procedure. Table 3 shows the

different values of the test statistics and p-values. We evaluate results using a nominal level

of 0.05. As we see from Table 3, our test fails to reject the model (4.1) with degenerate B2i

but rejects the linear random coefficient model where B2i = 0. Not surprisingly, we also fail to

reject the random coefficient QUAIDS model. The dimension parameters kn and mn are chosen

via the proposed minimum-maximum principle.15 It is interesting to note that the procedure

selects higher order basis functions to account for the random coefficient of the quadratic term.

Since higher order basis functions are required to estimate sharp peaks, this also supports the

hypothesis that the marginal p.d.f. B2 is akin to a Dirac measure (i.e., the distribution is

15Consequently, we choose kn to minimize the value of our statistic and mn to maximize the value the test
statistic over the range 1 ≤ kn ≤ 2n1/4 and kn < mn <

√
n.
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degenerate), or very close it. We also performed a quasi-likelihood ratio test of degeneracy as

proposed by Andrews [2001] and obtained the value of the test statistic of 0.243 with critical

value 2.706.16 Consequently, again we fail to reject the hypothesis of a quadratic model with

fixed coefficient on the quadratic term.

Null Hypothesis linear RC quadratic RC RC with fixed coeff. on
quadratic term in TotExp

value of test 2.2058 1.4573 1.5843
p-values 0.0137 0.0725 0.0566

Table 3: Values of the tests with p-values when null hypothesis is either a linear random coef-
ficient model (i.e., B2i = 0 in (4.1)), a quadratic random coefficient model (i.e., random B2i

in (4.1)), or a random coefficient model with degenerate coefficient on the quadratic term (i.e.,
B2i = b2 in (4.1) for some fixed b2).

The analysis thus far assumes that total expenditure is exogenous. However, in consumer

demand it is commonly thought that log total expenditure is endogenous and is hence instru-

mented for, typically by labor income, say Z, see Lewbel [1999]. One might thus argue that we

reject our hypotheses not due to a failure of the functional form assumptions, but because of a

violation of exogeneity of total expenditure. Therefore, we follow Imbens and Newey [2009], and

model endogeneity through a structural heterogeneous equation that relates total expenditure

X to the instrument labor income Z, i.e.,

X = ψ(Z,U),

where U denotes a scalar unobservable. Following Imbens and Newey [2009], we assume that the

instrument Z is exogenous, i.e., we assume Z ⊥ (B,U), implying X ⊥ B|U , and we assume that

the function ψ is strictly monotonic in U. Finally, we employ the common normalization that

U |Z is uniformly distributed on the unit interval [0, 1]. Then, the disturbance U is identified

through the conditional cumulative distribution function of X given Z, i.e.,

U = FX|Z(X|Z).

Since X ⊥ B|U , we then simply modify our testing procedure by additionally conditioning

on controls U . In the consumer demand literature, this control function approach was also

considered by Hoderlein [2011], who propose a life-cycle structural model that yields this speci-

fication. Generally, the control function U would have to be estimated in a first stage. Since the

16Note that all the hypotheses under consideration would have been rejected under a nominal level of 0.1.
However, given the recent discussion of lowering the significance levels, see Benjamin et al. [2017], we feel that
a level of 0.1 is not meaningful here.
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theory involving pre-estimation is beyond the scope of this paper, we do not adjust for estima-

tion error in this variable, which may lead to a higher variance (depending on the smoothness

assumptions).

The results of this modification are summarized in Table 4. As we see from this table, the

Null Hypothesis linear RC quadratic RC RC with fixed coeff. on
quadratic term in TotExp

value of test 1.8514 1.0857 1.2829
p–values 0.0321 0.1388 0.0998

Table 4: Values of the test statistics with p–values, when additionally corrected for endogeneity.

value of the modified test statistics are smaller, once we introduce the instrument Z in a control

function approach. This possibly indicates that there is some endogeneity bias in the first case;

however, our main conclusions remain unchanged: We soundly reject the linear RC model, and

fail to reject Hdeg and Hmod.

5 Conclusion

This paper develops nonparametric specification testing for random coefficient models. We

employ a sieve strategy to obtain tests for both the functional form of the structural equation,

e.g., for linearity in random parameters, as well as for the important question of whether or

not a parameter can be omitted. While the former can be used to distinguish between various

models, including such models where the density of random coefficients is not necessarily point

identified, the latter types of test reduce the dimensionality of the random coefficients density.

From a nonparametric perspective, this is an important task, because random coefficient models

are known to suffer from very slow rates of convergence, see Hoderlein et al. [2010]. We establish

the large sample behavior of our test statistics, and show that our tests work well in a finite

sample experiment and allow to obtain reasonable results in a consumer demand application.

Mathematical Appendix

Throughout the proofs, we will use C > 0 to denote a generic finite constant that may be

different in different uses. We use the notation an . bn to denote an ≤ Cbn for all n ≥ 1.

Further, for ease of notation we write
∑

j for
∑n

j=1. Recall that ‖·‖ denotes the usual Euclidean

norm, while for a matrix A, ‖A‖ is the operator norm. Further, ‖φ‖X ≡
√
E(φ2(X)) and〈

φ, ψ
〉
X
≡ E[φ(X)ψ(X)]. For any integer m ≥ 1, In denotes the mn×mn dimensional identity

matrix. Recall the notation Pn = E[pmn(X)pmn(X)′].
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Proofs of Section 2.

Proof of Proposition 1. Let us denote f = dFX

dν
. For some constant 0 < c < 1, for all

n ≥ 1, and any an ∈ Rmn we have

‖an‖2 =

∫
(a′n pmn(x))2 1{f(x) ≥ λn}ν(dx) +

∫
(a′n pmn(x))2 1{f(x) < λn}ν(dx)

≤ λ−1
n

∫
(a′n pmn(x))2f(x)ν(dx) + c

∫
(a′n pmn(x))2ν(dx).

Consequently, we obtain λnIn . Pn.

By Assumption 2, the eigenvalues of λ−1
n Pn are bounded away from zero and hence, it may

be assumed that Pn = λnIn. Otherwise, consider a linear transformation of pmn of the form

p̌mn ≡ (Pn/λn)−1/2pmn where supx∈X ‖p̌mn(x)‖ . mn using that the smallest eigenvalue of

(Pn/λn)−1/2 is bounded away from zero uniformly in n.

Lemma 5.1. Under Assumption 2 (ii) it holds
√
mn . ςmn.

Proof. Without loss of generality it may be assumed that
∫
$(t)dt = 1. By the definition of

ςmn we conclude

ς2
mn

=

∫ ∫ ∥∥∥P−1/2
n E

[
δ(V, s)δ(V, t)pmn(X) pmn(X)′

]
P−1/2
n

∥∥∥2

F
$(s)$(t)dsdt

≥ λ−2
n

mn∑
l=1

∫ ∫ ∣∣∣E[δ(V, s)δ(V, t)p2
l (X)

]∣∣∣2$(s)$(t)dsdt

≥ λ−2
n

mn∑
l=1

(
E
[
|
∫
δ(V, t)$(t)dt|2p2

l (X)
])2

(by Jensen’s inequality)

≥ Cλ−2
n

mn∑
l=1

(
E[p2

l (X)]
)2

(by Assumption 3)

= Cmn.

In the following, we make use of the notations P̂n = n−1
∑

j pmn(Xj)pmn(Xj)
′ and γ̂n(t) ≡

(nP̂n)−1
∑

j exp(itYj)pmn(Xj). Let Ân = n−1
∑

j

∫
(Fgqkn)(Xj,−t)(Fgq′kn)(Xj, t)$(t)dt and

its population counterpart An = E
[ ∫

(Fgqkn)(X,−t)(Fgq′kn)(X, t)$(t)dt
]
. Recall the def-

inition β̂n = (nÂn)−
∑

j

∫
(Fgqkn)(Xj,−t)ϕ̂n(Xj, t)$(t)dt and further, we introduce βn =

A−n
∫
E[(Fgqkn)(X,−t)ϕ(X, t)]$(t)dt.
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Proof of Theorem 2.1. We make use of the decomposition

nSn =
∑
j

∫ ∣∣ε̂n(Xj, t)
∣∣2$(t)dt

=
∑
j

∫ ∣∣pmn(Xj)
′ γ̂n(t)−Πmnϕ(Xj, t)

∣∣2$(t)dt

+ 2
∑
j

∫ (
pmn(Xj)

′ γ̂n(t)−Πmnϕ(Xj, t)
)(
Πmnϕ(Xj, t)− (Fgf̂Bn)(Xj, t)

)
$(t)dt

+
∑
j

∫ ∣∣Πmnϕ(Xj, t)− (Fgf̂Bn)(Xj, t)
∣∣2$(t)dt

=In + 2 IIn + IIIn (say).

Consider In. We conclude

In = n

∫ (
γ̂n(t)−

〈
ϕ(·, t), pmn

〉
X

)′
P̂n

(
γ̂n(t)−

〈
ϕ(·, t), pmn

〉
X

)
$(t)dt

= n−1

∫ (∑
j

(
exp(itYj)−Πmnϕ(Xj, t)

)
pmn(Xj)

)′
P̂−1
n

×
(∑

j

(
exp(itYj)−Πmnϕ(Xj, t)

)
pmn(Xj)

)
$(t)dt

= λ−1
n

∫ ∥∥n−1/2
∑
j

(
exp(itYj)−Πmnϕ(Xj, t)

)
pmn(Xj)

∥∥2
$(t)dt

+ n−1

∫ (∑
j

(
exp(itYj)−Πmnϕ(Xj, t)

)
pmn(Xj)

)′(
P̂−1
n − λ−1

n In
)

×
(∑

j

(
exp(itYj)−Πmnϕ(Xj, t)

)
pmn(Xj)

)
$(t)dt

= B1n +B2n (say).

Since (Πmnϕ(X, t) − ϕ(X, t))pmn(X) is a centered random variable for all t it is easily seen

that B1n = λ−1
n

∫ ∥∥n−1/2
∑

j

(
exp(itYj)− ϕ(Xj, t)

)
pmn(Xj)

∥∥2
$(t)dt+ op(1). Thus, Lemma 5.2

yields (
√

2ςmn)−1
(
B1n − µmn

) d→ N (0, 1). To show that B2n = op(
√
mn) note that

‖P̂−1
n − λ−1

n In‖ ≤ λ−1
n ‖(P̂n/λn)−1‖‖In − P̂n/λn‖ = Op

(√
(mn log n)/(nλ2

n)
)

by Lemma 6.2 of Belloni et al. [2015]. Further, from E[(exp(itY ) − Πmnϕ(X, t))pl(X)] = 0,
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1 ≤ l ≤ mn, we deduce

n−1

∫
E
∥∥∥∑

j

(
exp(itYj)−Πmnϕ(Xj, t)

)
pmn(Xj)

∥∥∥2

$(t)dt

.
∫
$(t)dtE‖pmn(X)‖2 + sup

x∈X
‖pmn(x)‖2

mn∑
l=1

∫ 〈
ϕ(·, t), pl

〉2

X
$(t)dtE[p2

l (X)]

. mnλn. (5.1)

The result follows due to condition m2
n log n = o(nλn). Thereby, it is sufficient to prove IIn +

IIIn = op(
√
mn). Consider IIIn. We observe

IIIn .
∑
j

∫ ∣∣Fg(f̂Bn −ΠknfB)(Xj, t)
∣∣2$(t)dt+

∑
j

∫ ∣∣(FgΠknfB)(Xj, t)−Πmnϕ(Xj, t)
∣∣2$(t)dt,

where
∑

j

∫ ∣∣(FgΠknfB)(Xj, t)−Πmnϕ(Xj, t)
∣∣2$(t)dt = op(

√
mn) and

∑
j

∫ ∣∣Fg(f̂Bn −ΠknfB)(Xj, t)
∣∣2$(t)dt = (β̂n − βn)′

∑
j

∫
(Fgqkn)(Xj, t)(Fgqkn)(Xj, t)

′$(t)dt(β̂n − βn)

= n(β̂n − βn)′Ân(β̂n − βn).

Let us introduce the vector β̃n = (nÂn)−
∑

j

∫
(Fgqkn)(Xj,−t)ϕ(Xj, t)$(t)dt. Using the prop-

erty of Moore-Penrose inverses that Ân = ÂnÂ
−
n Ân, we conclude

n(β̂n − βn)′Ân(β̂n − βn) . n(β̂n − β̃n)′Ân(β̂n − β̃n) + n(β̃n − βn)′Ân(β̃n − βn)

.
∥∥∥n−1/2

∑
j

∫
(Fgqkn)(Xj,−t)

(
ϕ̂n(Xj, t)− ϕ(Xj, t)

)
$(t)dt

∥∥∥2

‖Â−n ‖

+ n
∥∥∥∫ E

[
(Fgqkn)(X,−t)ϕ(X, t)

]
$(t)dt

∥∥∥2

‖Â−n − A−n ‖2‖Ân‖

+
∥∥∥n−1/2

∑
j

∫ (
(Fgqkn)(Xj,−t)ϕ(Xj, t)− E

[
(Fgqkn)(X,−t)ϕ(X, t)

])
$(t)dt

∥∥∥2

‖A−n ‖2‖Ân‖.

From Lemma 5.3 we have ‖Â−n −A−n ‖ = Op

(√
(log n)kn/(nτn)

)
. By Assumption 4 (v) it holds

√
τn‖A−n ‖ = O(1) and thus, ‖Â−n ‖ ≤ ‖Â−n − A−n ‖ + ‖A−n ‖ = Op(τ

−1/2
n ). Thereby, it is sufficient
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to consider∥∥∥n−1/2
∑
j

∫
(Fgqkn)(Xj,−t)

(
ϕ̂n(Xj, t)− ϕ(Xj, t)

)
$(t)dt

∥∥∥2

. ‖n−1/2
∑
j

∫
(Fgqkn)(Xj,−t)pmn(Xj)

′(γ̂n(t)−
〈
ϕ(·, t), pmn

〉
X

)
$(t)dt

∥∥∥2

+ ‖n−1/2
∑
j

∫
(Fgqkn)(Xj,−t)

(
Πmnϕ(Xj, t)− ϕ(Xj, t)

)
$(t)dt

∥∥∥2

. n‖
∫
E
[
(Fgqkn)(X,−t)pmn(X)′

](
γ̂n(t)−

〈
ϕ(·, t), pmn

〉
X

)
$(t)dt

∥∥∥2

+ n‖
∫
E
[
(Fgqkn)(X,−t)

(
Πmnϕ(X, t)− ϕ(X, t)

)]
$(t)dt

∥∥∥2

+Op(kn)

= Op

(
kn + n‖Πmnϕ− ϕ‖2

$

)
which can be seen as follows. Let

〈
·, ·
〉
$

denote the inner product induced by the norm ‖ · ‖$.

We calculate

‖
∫
E
[
(Fgqkn)(X,−t)

(
Πmnϕ(X, t)− ϕ(X, t)

)]
$(t)dt

∥∥∥2

=
kn∑
l=1

〈
Fgql, Πmnϕ− ϕ

〉2

$

=
kn∑
l=1

(∫
ql(b)E

[(
F∗g (Πmnϕ− ϕ)

)
(X, b)

]
db
)2

.
∫ (

E
[(
F∗g (Πmnϕ− ϕ)

)
(X, b)

])2

db

. ‖Πmnϕ− ϕ‖2
$

where F∗g is the adjoint operator of Fg given by (F∗gφ)(b) =
∫
E[exp(−itg(X, b))φ(X, t)]$(t)dt.

Consequently, we have n(β̂n − βn)
′
Ân(β̂n − βn) = Op

(
(log n)kn/τn + n‖Πmnϕ − ϕ‖2

$/
√
τn
)

=

op(
√
mn) and, in particular, IIIn = op(

√
mn). Consider IIn. From above we infer n‖β̂n−βn‖2 =
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Op

(
(log n)kn/τn + n‖Πmnϕ− ϕ‖2

$/
√
τn
)
. Thereby, we obtain

|IIn|2 .
∣∣ ∫ ∑

j

(
exp(itYj)−Πmnϕ(Xj, t)

)
pmn(Xj)

′〈ϕ(·, t)− (FgΠknfB)(·, t), pmn

〉
X
$(t)dt

∣∣∣2
+
∣∣ ∫ ∑

j

(
exp(itYj)−Πmnϕ(Xj, t)

)
pmn(Xj)

′〈(Fg(ΠknfB − f̂Bn)(·, t), pmn

〉
X
$(t)dt

∣∣∣2 + op(mn)

. n

∫
E
∣∣Πmnϕ(X, t)− (ΠmnFgΠknfB)(X, t)

∣∣2$(t)dt

+ n

∫
E
∥∥( exp(itY )−Πmnϕ(X, t)

)
(ΠmnFgqkn)(X, t)

∥∥2
$(t)dt ‖β̂n − βn‖2 + op(mn)

= Op

(
n‖Fg(ΠknfB − fB)‖2

$ + kn((log n)kn/τn + n‖Πmnϕ− ϕ‖2
$/
√
τn)
)

+ op(mn)

= op(mn)

where we used that ‖Πmnϕ − ϕ‖∞ = O(1) and
∑kn

l=1 ‖ΠmnFgql‖2
$ = O(kn), which completes

the proof.

We require the following notation. Let us introduce the covariance matrix estimator Σ̂mn(s, t) =

n−1
∑

j pmn(Xj)pmn(Xj)
′δn(Vj, s)δn(Vj, t) where δn(Vj, s) = exp(itY ) − (Fgf̂Bn)(X, t). Fur-

ther, we define δ̃n(V, t) = exp(itY ) − (FgΠknfB)(X, t) and introduce the matrix Σ̃mn(s, t) =

n−1
∑

j pmn(Xj)pmn(Xj)
′δ̃n(Vj, s)δ̃n(Vj, t).

Proof of Proposition 2. To keep the presentation of the proof simple, we do not consider

estimation of Pn in ς̂mn and µ̂mn . We make use of the relationship

δn(·, s)δn(·, t)− δ̃n(·, s)δ̃n(·, t) =δ̃n(·, s)
(
(Fgf̂Bn)(·, t)− (FgΠknfB)(·, t)

)
+ δn(·, t)

(
(Fgf̂Bn)(·, s)− (FgΠknfB)(·, s)

)
.

Observe∫ ∫
‖Σ̂mn(s, t)− Σ̃mn(s, t)‖2

F$(s)ds$(t)dt

.
∫ ∫ ∥∥∥n−1

∑
j

pmn(Xj)pmn(Xj)
′δ̃n(Vj, s)

(
(Fgf̂Bn)(Xj, t)− (FgΠknfB)(Xj, t)

)∥∥∥2

F
$(s)ds$(t)dt

+

∫ ∫ ∥∥∥n−1
∑
j

pmn(Xj)pmn(Xj)
′ δn(Vj, t)

(
(Fgf̂Bn)(Xj, s)− (FgΠknfB)(Xj, s)

)∥∥∥2

F
$(s)ds$(t)dt

= In + IIn (say).
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We conclude

In ≤
∫ ∫ ∥∥∥ 1

n

∑
j

δ̃n(Vj, s)pmn(Xj)pmn(Xj)
′(Fgpkn)(Xj, t)

′(β̂n − βn)
∥∥∥2

F
$(s)ds$(t)dt

≤
∫ ∫ ∥∥∥E[ δ̃n(V, s)pmn(X)pmn(X)′(Fgqkn)(X, t)′](β̂n − βn)

∥∥∥2

F
$(s)ds$(t)dt+ op(1)

≤ ‖β̂n − βn‖2

×Op

( mn∑
j,l=1

kn∑
l′=1

∫ ∫ (
E[(ϕ(X, s)− (FgΠknfB)(X, s))(Fgql′)(X, t)pj(X)pl(X)]

)2

$(s)ds$(t)dt
)

≤ ‖β̂n − βn‖2

×Op

( mn∑
l=1

kn∑
l′=1

∫ ∫
E
∣∣(ϕ(X, s)− (FgΠknfB)(X, s))(Fgql′)(X, t)pl(X)

∣∣2$(s)ds$(t)dt
)

= Op

(
mn(log n)k2

n/(τnn) +mnkn‖Πmnϕ− ϕ‖2
$/
√
τn
)

= op(1).

Here, we used ‖β̂n − βn‖2 = Op((log n)kn/τn + n‖Πmnϕ − ϕ‖2
$/
√
τn) which can be seen as in

the proof of Theorem 2.1. Since In = op(1) we conclude

IIn .
∫ ∫ ∥∥∥(β̂n − βn)′E[(Fgqkn)(X, s)pmn(X)pmn(X)′(Fgqkn)(X, t)′](β̂n − βn)

∥∥∥2

F
$(s)ds$(t)dt+ op(1)

≤ ‖β̂n − βn‖4

mn∑
j,l=1

∫ ∫
E[‖(Fgqkn)(X, s)‖‖(Fgqkn)(X, t)‖|pj(X)pl(X)|]2$(s)ds$(t)dt+ op(1)

≤ Cm2
n‖β̂n − βn‖4

(∫
E‖(Fgqkn)(X, t)‖2$(t)dt

)2

+ op(1)

= Op

(
m2
n(log n)kn/(τn)2 +m2

n‖Πmnϕ− ϕ‖4
$/τn

)
= op(1).

by using log nkn = o(τn
√
mn). Finally, it is easily seen that ς2

mn
−
∫ ∫
‖Σ̃mn(s, t)‖2$(s)ds$(t)dt =

op(1), which proves ςmn ς̂
−1
mn

= 1 + op(1). In particular, convergence of the trace of Σ̂mn(t, t) to

the trace of Σmn(t, t) follows by using |µ̂mn − µmn|2 ≤ mn

∫
‖Σ̂mn(t, t) − Σmn(t, t)‖2

F$(t)dt =

op(mn).

Proof of Theorem 2.2. Let us introduce αn = (nAn)−
∫
E[χn(X, t)ϕ(X,−t)]$(t)dt and

the estimator

α̂n = (nÂn)−
∫ ∑

j

χn(Xj,−t)ϕ̂n(Xj, t)$(t)dt.
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We prove in the following that

∑
j

∫ ∣∣ϕ̂n(Xj, t)− (Fg1 f̂B−2,n)(Xj, t) g̃(Xj, t, b̂2n)
∣∣2$(t)dt

=
∑
j

∫ ∣∣ϕ̂n(Xj, t)− χn(Xj, t)α̂n
∣∣2$(t)dt+ op(

√
mn).

By the definition of the estimator b̂2n in (2.7) we obtain

∑
j

∫ ∣∣ϕ̂n(Xj, t)− (Fg1 f̂B−2,n)(Xj, t) g̃(Xj, t, b̂2n)
∣∣2$(t)dt

≤
∑
j

∫ ∣∣ϕ̂n(Xj, t)− (Fg1 f̂B−2,n)(Xj, t) g̃(Xj, t, b2)
∣∣2$(t)dt (5.2)

for any b2 ∈ B2 satisfying (2.6). By the definition of the least squares estimator α̂n and the

triangular inequality we obtain√∑
j

∫ ∣∣ϕ̂n(Xj, t)− (Fg1 f̂B−2,n)(Xj, t)g̃(Xj, t, b̂2n)
∣∣2$(t)dt

≥
√∑

j

∫ ∣∣ϕ̂n(Xj, t)− (Fg1 f̂B−2,n)(Xj, t)Πln g̃(Xj, t, b̂2n)
∣∣2$(t)dt

−
√∑

j

∫ ∣∣(Fg1 f̂B−2,n)(Xj, t)
(
Πln g̃(Xj, t, b̂2n)− g̃(Xj, t, b̂2n)

)∣∣2$(t)dt

≥
∑
j

∫ ∣∣ϕ̂n(Xj, t)− χn(Xj, t)
′α̂n
∣∣2$(t)dt−Op

(√
nmax
b∈B2
‖Πln g̃(·, ·, b)− g̃(·, ·, b)‖$

)
=
∑
j

∫ ∣∣ϕ̂n(Xj, t)− χn(Xj, t)
′α̂n
∣∣2$(t)dt− op(m1/4

n ).
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Consequently, applying again the triangular inequality together with inequality (5.2) yields

∣∣∣√∑
j

∫ ∣∣ϕ̂n(Xj, t)− (Fg1 f̂B−2,n)(Xj, t)g̃(Xj, t, b̂2n)
∣∣2$(t)dt

−
√∑

j

∫ ∣∣ϕ̂n(Xj, t)− χn(Xj, t)′α̂n
∣∣2$(t)dt

∣∣∣
≤
√∑

j

∫ ∣∣ϕ̂n(Xj, t)− (Fg1 f̂B−2,n)(Xj, t)g̃(Xj, t, b2)
∣∣2$(t)dt

−
√∑

j

∫ ∣∣ϕ̂n(Xj, t)− χn(Xj, t)′α̂n
∣∣2$(t)dt+ op(m

1/4
n )

≤
√∑

j

∫ ∣∣Πln g̃(Xj, t, b2)− g̃(Xj, t, b2)
∣∣2$(t)dt+

√
n ‖α̂n − αn‖+ op(m

1/4
n )

= n‖Πln g̃(·, ·, b2)− g̃(·, ·, b2)‖2
$ +Op

(√
knln(log n)/τn +

√
nτ−1/4

n ‖Πmnϕ− ϕ‖$
)

+ op(m
1/4
n )

= op(m
1/4
n ),

as in the proof of Theorem 2.1. Now following line by line the proof of Theorem 2.1 and using

∑
j

∫ ∣∣Πmnϕ(Xj, t)− (Fg1ΠknfB−2)(Xj, t)Πln g̃(Xj, t, b2)
∣∣2$(t)dt

. n‖Πmnϕ− ϕ‖2
$ + n‖Fg1ΠknfB−2 −Fg1fB−2‖2

$ + n‖Πln g̃(·, ·, b2)− g̃(·, ·, b2)‖2
$ + op(

√
mn)

= op(
√
mn),

the result follows.

Proof of Theorem 2.3. We make use of the decomposition

nSn =
∑
j

∫ ∣∣pmn(Xj)
′(γ̂n(t)−

〈
ϕ(·, t)pmn

〉
X

)∣∣2$(t)dt

+ 2
∑
j

∫ (
pmn(Xj)

′(γ̂n(t)−
〈
ϕ(·, t), pmn

〉
X

))
×
(
Πmnϕ(Xj, t)− ĥn(X1j, t)g̃(Xj, t, b̂2n)

)
$(t)dt

+
∑
j

∫ ∣∣Πmnϕ(Xj, t)− ĥn(X1j, t)g̃(Xj, t, b̂2n)
∣∣2$(t)dt

=In + 2 IIn + IIIn (say)

where we used
〈
h(·, t)g̃(·, t, b2), pmn

〉
X

=
〈
ϕ(·, t), pmn

〉
X

. Consider In. As in the proof of
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Theorem 2.1 we have

In = nλ−1
n

∫ ∥∥∥n−1/2
∑
j

(
exp(itYj)− h(X1j, t)g̃(Xj, t, b2)

)
pmn(Xj)

∥∥∥2

$(t)dt+ op(
√
mn).

Thus, Lemma 5.2 yields (
√

2ςmn)−1
(
In−µmn

) d→ N (0, 1). Consider IIIn. Since |g̃(Xj, t, b)| ≤ 1

for all b we evaluate

IIIn .
∑
j

∫ ∣∣Πmnϕ(Xj, t)− ϕ(Xj, t)
∣∣2$(t)dt

+
∑
j

∫ ∣∣h(X1j, t)− ĥn(X1j, t)
∣∣2$(t)dt

+
∑
j

∫
|ĥn(X1j, t)|2

∣∣g̃(Xj, t, b2)− g̃(Xj, t, b̂2n)
∣∣2$(t)dt.

It holds
∫
‖ĥn(·, t)−Πknh(·, t)‖2

X1
$(t)dt = Op(kn/n) as we see in the following. We have

λn

∫
‖ĥn(·, t)−Πknh(·, t)‖2

X1
$(t)dt

≤ λn
∥∥(∑

j

pkn(Xj)pkn(Xj)
′)−1∥∥ ∫ ∥∥∑

j

(
Πknh(X1j, t)−exp

(
it(Yj−g2(Xj, b̂2n))

))
pkn(X1j)

∥∥2
$(t)dt

.
∫ ∥∥n−1

∑
j

(
Πknh(X1j, t)− exp

(
it(Yj − g2(Xj, b2))

))
pkn(X1j)

∥∥2
$(t)dt

+ ‖b̂2n − b2‖2

kn∑
l=1

∫ ∥∥n−1
∑
j

exp(itYj)g̃b(Xj, t, b̃2n)pl(X1j)
∥∥2
$(t)dt+ op(1),

by a Taylor series expansion, where b̃2n is between b̂2n and b2. As in relation (5.1), from

E[
(
Πknh(X, t)− exp(it(Y − g2(X, b2))

)
pkn(X)] = 0 we deduce∫

E
∥∥n−1

∑
j

(
Πknh(X1j, t)− exp(it(Yj − g2(Xj, b2))

)
pkn(Xj)

∥∥2
$(t)dt = O(n−1knλn).
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Further, since
∫
E supb∈B2

∥∥g̃b(X, t, b)∥∥2
$(t)dt ≤ C we have

E
( kn∑
l=1

∫ ∥∥n−1
∑
j

exp(itYj)g̃b(Xj, t, b̃2n)pl(Xj)
∥∥2
$(t)dt

)1/2

≤ E
[
‖pkn(X)‖

(∫ ∥∥g̃b(X, t, b̃2n)
∥∥2
$(t)dt

)1/2]
≤
(
E‖pkn(X)‖2

)1/2
(∫

E sup
b∈B2

∥∥g̃b(X, t, b)∥∥2
$(t)dt

)1/2

= O
(√

λnkn
)
.

This establishes the rate for the estimator ĥn. In light of condition n‖Πknh− h‖2
$ = o

(√
mn

)
,

from n‖b2 − b̂2n‖2 = Op(1) and kn = o(
√
mn) we infer IIIn = op(

√
mn). It remains to show

IIn = op(
√
mn), which follows by

|IIn| .
∣∣ ∫ ∑

j

(
exp(itYj)−Πmnϕ(Xj, t)

)
pmn(Xj)

′〈Πmnϕ(·, t)−Πknh(·, t)g̃(·, t, b2), pmn

〉
X
$(t)dt

∣∣∣
+
∣∣ ∫ ∑

j

(
exp(itYj)−Πmnϕ(Xj, t)

)
pmn(Xj)

′〈Πknh(·, t)g̃(·, t, b2)− ĥn(·, t)g̃(·, t, b̂2n), pmn

〉
X
$(t)dt

∣∣∣
+ op(

√
mn)

= Op(
√
n‖Πknh− h‖$) + op(

√
mn)

+Op

((
kn

∫
E sup

b∈B2

∥∥ mn∑
l=1

pl(X)
〈
g̃b(·, t, b)p′kn , pl

〉
X

∥∥2
$(t)dt

)1/2)
= op(

√
mn),

using that
∫
E supb∈B2

∥∥∑mn

l=1 pl(X)
〈
g̃b(·, t, b)p′kn , pl

〉
X

∥∥2
$(t)dt ≤

∑kn
l=1 E[p2

l (X)] = O(kn), which

proves the result.

In the following, recall the definition of f ∗B satisfying ‖Fgf ∗B − ϕ‖$ ≤ ‖Fgf − ϕ‖$ for all

p.d.f. f .

Proof of Proposition 3. For the proof it is sufficient to show Sn ≥ C‖Fgf ∗B−ϕ‖2
$ +op(1).

The proof of Theorem 2.1 together with the basic inequality (a− b)2 ≥ a2 − b2 implies that

Sn = λ−1
n

mn∑
l=1

∫ ∣∣∣n−1
∑
j

(exp(itYj)− (Fgf ∗B)(Xj, t))pl(Xj)
∣∣∣2$(t)dt+ op(1)

&
mn∑
l=1

∫ ∣∣E[(exp(itY )− (Fgf ∗B)(X, t))pl(X)]
∣∣2$(t)dt+ op(1)

& ‖Fgf ∗B − ϕ‖2
$ + op(1),
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by using that (λn)n≥1 is a nonincreasing sequence.

Proof of Proposition 4. Following the proof Theorem 2.1, it is easily seen that

nSn =λ−1
n

mn∑
l=1

∫ ∣∣∣n−1/2
∑
j

(Yi − ϕ(Xj, t))pl(Xj)
∣∣∣2$(t)dt

+
∑
j

∫ ∣∣(FgΠknf
∗
B)(Xj, t)−Πmnϕ(Xj, t)

∣∣2$(t)dt+ op(
√
mn).

Further, under the sequence of local alternatives (2.11), we calculate

∑
j

∫ ∣∣(FgΠknf
∗
B)(Xj, t)−Πmnϕ(Xj, t)

∣∣2$(t)dt = n‖Fgf ∗B − ϕ‖2
$ + op(

√
mn)

= ς−1
mn
‖Fg∆‖2

$ + op(
√
mn),

which proves the result.

Technical Appendix.

Lemma 5.2. Let Assumptions 1–3 hold true. Then

(
√

2ςmn)−1
(
λ−1
n

mn∑
l=1

∫ ∣∣∣n−1/2
∑
j

δ(Vj, t)pl(Xj)
∣∣∣2$(t)dt− µmn

)
d→ N (0, 1).

Proof. Let us denote the real and imaginary parts of δ(V, t)pl(X) by δRl (V, t) = Re
(
δ(V, t)

)
pl(X)

and δIl (V, t) = Im
(
δ(V, t)

)
pl(X), respectively. We have

mn∑
l=1

∫ ∣∣∣(λnn)−1/2
∑
j

δ(Vj, t)pl(Xj)
∣∣∣2$(t)dt

=
mn∑
l=1

∫ ∥∥∥(λnn)−1/2
∑
j

(
δRl (Vj, t), δ

I
l (Vj, t)

)′∥∥∥2

$(t)dt

=(λnn)−1

mn∑
l=1

∑
j

∫ ∥∥∥(δRl (Vj, t), δ
I
l (Vj, t)

)′∥∥∥2

$(t)dt

+ (λnn)−1

mn∑
l=1

∑
j 6=j′

∫ (
δRl (Vj, t)δ

R
l (Vj′ , t) + δIl (Vj, t)δ

I
l (Vj′ , t)

)
$(t)dt

=In + IIn (say).
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We observe

E|In − µmn|2 = V ar
(

(λnn)−1

mn∑
l=1

∑
j

∫ ∣∣∣δ(Vj, t)pl(Xj)
∣∣∣2$(t)dt

)
≤ λ−2

n n−1E
[ ∫ ∣∣δ(V, t)∣∣4$(t)dt

( mn∑
l=1

p2
l (X)

)2]
. sup

x∈X
‖pmn(x)‖2λ−2

n n−1

mn∑
l=1

E[p2
l (X)] . m2

nn
−1λ−1

n = o(1)

using that
∫

supv |δ(v, t)|4$(t)dt is bounded. Consider IIn. Let us introduce the Martingale

difference array Qnj =
√

2(ςmnn)−1
∑mn

l=1

∑j−1
j′=1

∫ (
δRl (Vj, t)δ

R
l (Vj′ , t) + δIl (Vj, t)δ

I
l (Vj′ , t)

)
$(t)dt

for j = 2, . . . , n, and zero otherwise. Further,

(
√

2ςmn)−1IIn =
√

2(ςmnn)−1
∑
j<j′

mn∑
l=1

∫ (
δRl (Vj, t)δ

R
l (Vj′ , t)+δ

I
l (Vj, t)δ

I
l (Vj′ , t)

)
$(t)dt =

∑
j

Qnj.

It remains to show that
∑

j Qnj
d→ N (0, 1), which follows by Lemma A.3 of Breunig [2015b]

by using the following computations. To show
∑∞

j=1E|Qnj|2 ≤ 1 observe that

∑
j 6=j′

∫ (
δIl (Vj, t)δ

R
l (Vj′ , t)− δRl (Vj, t)δ

I
l (Vj′ , t)

)
$(t)dt = 0

and E[X1jX1j′ ] = 0 for j 6= j′. Thus, for j = 2, . . . , n we have

E|Qnj|2 =
2(j − 1)

n2ς2
mn

E
∣∣∣ mn∑
l=1

∫
δl(V1, t)δl(V2, t)$(t)dt

∣∣∣2
=

2(j − 1)

n2ς2
mn

mn∑
l,l′=1

∫ ∫
E
[
δl(V, s)δl′(V, t)

]
E
[
δl(V, s)δl′(V, t)

]
$(s)ds$(t)dt

=
2(j − 1)

n2ς2
mn

mn∑
l,l′=1

∫ ∫ ∣∣∣E[δl(V, s)δl′(V, t)]∣∣∣2$(s)ds$(t)dt

=
2(j − 1)

n2

by the definition of ςmn and thus
∑

j E|Qnj|2 = 1− 1/n.

Recall Ân = n−1
∫

Fn(−t)′Fn(t)$(t)dt and An =
∫
E
[
(Fgpkn)(X,−t)(Fgpkn)(X, t)′

]
$(t)dt.

Lemma 5.3. Under the conditions of Theorem 2.1 it holds

‖Â−n − A−n ‖ = Op

(√
(log n)kn/(nτn)

)
.
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Proof. On the set Ω ≡
{
‖A−n ‖‖Ân − An‖ < 1/4, rank(An) = rank(Ân)

}
, it holds R(Ân) ∩

R(An)⊥ = {0} by Corollary 3.1 of Chen et al. [1996], where R denotes the range of a mapping.

Consequently, by using properties of the Moore-Penrose pseudoinverse it holds on the set Ω:

Â−n − A−n =− Â−n (Ân − An)A−n + Â−n (Â−n )′(Ân − An)′(Ikn − AnA−n )

+ (Ikn − ÂnÂ−n )(Ân − An)′(A−n )′A−n ,

see derivation of equation (3.19) in Theorem 3.10 on page 345 of Nashed [2014]. Applying the

operator norm and using the fact that Ikn−AnA−n and Ikn− ÂnÂ−n as projections have operator

norm bounded by one, we obtain

‖Â−n − A−n ‖ 1Ω =
(
‖Â−n ‖‖Ân − An‖‖A−n ‖+ ‖Â−n ‖2‖Ân − An‖+ ‖A−n ‖2‖Ân − An‖

)
1Ω

≤ 3 ‖Ân − An‖max
{
‖A−n ‖2, ‖Â−n ‖2 1Ω

}
.

By Theorem 3.2 of Chen et al. [1996] it holds ‖Â−n ‖ 1Ω ≤ 3‖A−n ‖ = O(τ
−1/2
n ). Consequently,

Lemma 6.2 of Belloni et al. [2015] yields ‖Â−n −A−n ‖ 1Ω = Op

(√
kn(log n)/(nτn)

)
. The assertion

follows by 1Ω = 1 with probability approaching one.
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