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1. Introduction

Heterogeneity in individual behavior is a common source of variation in microecono-
metric applications. Thus, in recent years it became increasingly popular to explicitly
model unobserved heterogeneity, for instance, by introducing random coefficients. Yet
identification in random coefficient models requires functional form restrictions. This
paper shows that one can be much more flexible with respect to observed character-
istics which can essentially influence the shape of the density of random coefficients.
Specifically we extend the ordinary random coefficient model to allow for nonlineari-
ties in observed heterogeneity, captured by varying coefficients.

The varying random coefficient (VRC) model is given by

Y = B0 +B′1X, (1.1)

where Y is a scalar dependent variable and X is a vector of covariates of dimension
d− 1. The VRC vector B = (B0, B

′
1)′ satisfies

B0 = g0(W ) + A0 and B1,l = gl(W ) + A1,l where 1 ≤ l ≤ d− 1 (1.2)

for some covariates W and unobservables A = (A0, A1,1, . . . , A1,d−1)′. The varying
coefficient functions g0(·), . . . , gd−1(·) are unknown and capture nonlinearities in ob-
served heterogeneity. The vectors X and W may have elements in common but, to
ensure identification of the varying coefficient functions in general, we rule out that
X is a subvector of W . In this model, the varying random slope (VRS) given by B1

represents observed and unobserved heterogeneity in the dependence of Y on X. The
VRC is thus more general than the ordinary random coefficient (RC) model where
all varying coefficient functions vanish and hence, B = A. Identification of the VRC
model is based on full independence of A and X but only conditional mean indepen-
dence of A and (X,W ). While identification of the model requires X to have enough
variation, our setup permits W to be discrete.

This paper is concerned with inference on the density of the VRC vector B holding
observed characteristics W fixed. This density contains all the information of the
underlying heterogeneity in the model and many functionals of it are of interest, e.g.,
the distribution of potential outcomes. A density estimator based on weighted sieve
minimum distance is proposed that builds on a conditional characteristic function
equation of the model. The estimation criterion is minimized over a finite dimensional
sieve space which is also convenient to impose shape restrictions on the estimator.
The estimator is of closed form if no constraints are imposed on the sieve space and
then coincides with a double series least squares estimator. An initial weighting step
is used in the estimation criterion to stabilize the procedure. This is important,
as it is well known that estimation of the joint RC density in ordinary RC models
leads to an ill-posed inverse problem. One insight of this paper is that our procedure
allows us to separate estimation of the VRS density from estimation of the varying
random intercept B0. In particular, we show that estimation of the VRS density does
not suffer from the ill-posed estimation problem once we impose finite dimensional
restrictions on the density of B0.

For the sieve minimum distance estimator, inference results are established that
go beyond what has been obtained in ordinary RC models. The rate of convergence of
the estimator is derived, which coincides with the usual ill-posed rate of convergence
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when estimating the joint VRC density and corresponds to the usual well-posed,
nonparametric rate when only the density of VRS is of interest and semiparametric
restrictions on the random intercept are imposed. Many important objects of interest,
such as the distribution of the potential outcome, are functionals of the density of B.
For a plug-in estimator of such linear functionals we establish pointwise asymptotic
normality. This paper also provides a bootstrap procedure to construct uniform
confidence bands of the estimator. The inference results in this paper make explicit
how the marginal distribution of X affects the asymptotic behavior of the estimator.

Identification of the model requires a large support condition of X in general. Yet
under mild assumptions, identification can be also achieved under bounded support
via extrapolation. This motivates the use of global basis functions for the sieve
minimum distance estimator, such as the Hermite functions. When the sieve space
is spanned by Hermite functions, we see that the estimator considerably simplifies
as these basis functions form eigenfunctions of the Fourier transform. The estimator
performs well in finite samples even when covariates X are far from being heavy tailed.
This is demonstrated in Monte Carlo simulations that also clarify how the variance
of X affects the mean integrated squared error of the estimator in finite samples.

The estimation procedure is also applied to analyze heterogeneity in income elas-
ticity of housing demand using German survey data. In our specification, estimated
observed housing characteristics exhibit a nonlinear shape. The estimated density of
heterogeneous income elasticity is unimodal with mode close to zero and positively
skewed. Uniform confidence bands allow to make significant statements about the
shape of the estimated density. The empirical application demonstrates that our
proposed methodology can be useful to analyze complex heterogeneity using cross
sectional data.

Nonparametric identification and estimation of ordinary RC models is considered
by Beran and Hall [1992], Beran et al. [1996], and Hoderlein et al. [2010]. For testing
of qualitative features of the ordinary RC models see Dunker et al. [2019]. Lewbel and
Pendakur [2017] generalize these models to allow for nonlinear index functions and in
the next section we will provide a more detailed comparison of it to the VRC model.
The ordinary RC models can be extended to conditional random coefficient models
that assume model equation (1.1) together with the condition that X is independent
of B conditional on W . This model is more flexible than (1.1–1.2), but requires
that the conditional density of X given W satisfies a large support condition for
all realizations of W . Beyond this more restrictive support restriction, estimation
in conditional RC models also suffers from the curse of dimensionality of W . This
is why functional form restrictions are typically employed rather than considering
the more general conditional RC models, see for instance, Lewbel and Pendakur
[2017, p. 1120]. Recently, correlated random coefficient models were studied in the
literature which allow for full dependence of random coefficients and covariates X.
In this setting, instruments are available that drive the covariates X but not the
random coefficients in (1.1). These types of models are analyzed by Masten [2018]
and Hoderlein et al. [2017]. While such a model is clearly more general than the VRC
model, identification of the CRC models can be challenging with more restrictive
exclusion assumptions and large support conditions on the instruments.

The methodology of sieve estimation became increasingly popular in recent years.
For sieve estimation of conditional moment restrictions models see Newey and Powell
[2003] and Ai and Chen [2003]. The VRC model does not fall into this category. For
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sieve estimation of ordinary RC models with discrete outcome see Fox et al. [2011]
and Fox et al. [2016]. In binary choice models, Gautier and Le Pennec [2018] proposed
an estimator based on needlet thresholding. In the context of specification testing, a
sieve approach was used by Breunig and Hoderlein [2018]. In the literature on varying
coefficients, series estimators were analyzed by Xia and Li [1999], Fan et al. [2003],
Xue and Wang [2012], or Ma and Song [2015].

The remainder of the paper is organized as follows. Section 2 provides the setup,
motivating examples, and sufficient conditions for nonparametric identification. In
Section 3, the estimation procedure based on sieve minimum distance is introduced
and its asymptotic properties are established. Section 4 is concerned with the fi-
nite sample properties of the estimator analyzed via Monte Carlo simulation and an
empirical illustration. Section 5 concludes. All proofs can be found in the appendix.

2. The Model and Identification

This section consists of two subsections. Subsection 2.1 recalls the varying random
coefficients (VRC) model, outlines its key properties, and provides motivating exam-
ples for it. Subsection 2.2 provides an identification result of the joint density of the
VRC vector B.

2.1. The Varying Random Coefficient Model

Consider again equations (1.1–1.2), the VRC model is given by

Y = B0 +B′1X, (1.1)

B0 = g0(W ) + A0 and B1,l = gl(W ) + A1,l where 1 ≤ l ≤ d− 1. (1.2)

As stated above X and W may have elements in common. Yet without further
functional form restrictions on the varying coefficient functions g0, . . . , gd−1 we need
to rule out that X has only elements that are contained in W (see also Assumption
1 and the discussion thereafter). The covariates X are assumed to be independent
of A and the vector of covariates (X ′,W ′)′ is restricted to be mean independent of
A, i.e., E[A|X,W ] = 0 (see Assumption 1 below). All the results in this paper will
hold if there were no varying coefficients, i.e., model (1.1–1.2) is the ordinary RC
model. While identification of the model requires X to have enough variation, our
setup permits W to be discrete.

Under conditional mean independence of A and (X,W ), model (1.1–1.2) implies
the varying coefficient model

E[Y |X,W ] = g0(W ) +
d−1∑
l=1

gl(W )Xl =: g(S), (2.1)

using the notation S = (X ′,W ′)′. In the conditional mean restriction (2.1), the
varying coefficient functions gl are identified through a rank condition, see also be-
low. For an overview article of varying coefficient models see Park et al. [2015]. We
emphasize that the varying coefficients specification in (2.1) also derives from the
additive separability of the random coefficients A in equation (1.2). Without impos-
ing such an additively separable structure, our model is in general not identified, see
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Masten [2018, Corollary 2]. On the other hand, under further assumptions, Lew-
bel and Pendakur [2017] establish identification when equation (1.1) is replaced by
Y = B0 +

∑d−1
l=1 Gl(B1,lXl) for unknown functions Gl and A is independent of (X,W )

(it is thus non-nested to our VRC model). While the sieve minimum distance ap-
proach in this paper allows for estimation of additional nonlinear index functions, we
do not consider this extension.

Identification of the varying coefficient functions g0, . . . , gd−1 in the VRC model
(1.1–1.2) can be obtained in the following two scenarios: First, under a full rank
condition on E[XX ′|W = w] or, second, if g1 ≡ · · · ≡ gd−1 ≡ 0. In the first case,
the VRC model has the interpretation similar to a conditional random coefficient
model but, instead of leaving the distribution of X and W unrestricted, it imposes
more structure on it. Also similarly to conditional random coefficient models, the
role of W is to ensure that independence between A and X is more plausible. The
variables W can also serve as control function residuals, which then allows X to be
endogenous, i.e., A is unconditionally correlated with X.1 In the second case, only
g0 differs from the zero function and thus the VRC model has the interpretation of a
nonlinear model in X, when X = W , but with random coefficients only on the linear
term.

This paper is concerned with estimation of the VRC density holding the observed
characteristics fixed at some potential realization w, i.e., the density fB(·, w) of

Bw = g(w) + A

where g(·) = (g0(·), . . . , gd−1(·))′ denotes the vector of varying coefficient functions.
In the case where X and W have no common elements, Bw captures heterogeneous
marginal effects. If X and W have joint elements then, to obtain marginal effects,
replace g(w) with the vector of partial derivatives of g(w) w.r.t. x. The results in
this paper are still valid in this case but it is not made explicit in order to keep the
notation simple. By holding observed characteristics W fixed, the density fB(·, w)
contains all information on unobserved heterogeneity. Many objects of interest, such
as the density of potential outcomes of Y , are linear functionals of fB(·, w).

Economic theory and empirical findings suggest nonlinearities in many applica-
tions of interest. For instance, through a nonparametric analysis of Engel curves
to analyze nonlinearities in total expenditure, Banks et al. [1997] suggest quadratic
terms in the logarithm of total expenditure. While a random coefficient version of
their nonlinear model is not identified one might still account for unobserved hetero-
geneity by allowing only the coefficient for the linear term to vary among individuals.
The following two examples provide a relation of VRC to measurement error mod-
els and show that ignoring nonlinearities in the varying coefficients may have severe
consequences in a standard Monte Carlo exercise setting.

Example 2.1 (Measurement Error Models). Consider a regression model with inter-
action term and measurement error in one covariate:

Y = β0 + β1X1 + β2X1X
∗
2 + β3X

∗
2 + U, (2.2)

1Following Imbens and Newey [2009] assume that endogenous regressors X are related to observed
instruments Z via X = ψ(Z,W ) where ψ is strictly monotonic in scalar W and Z ⊥ (B,W ).
The model implies independence of X and A conditional on W = FX|Z(X|Z).
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where the variable X∗2 is observed only with measurement error, i.e., X2 = X∗2 + V .
The deterministic parameters βl, 1 ≤ l ≤ 3, are unknown, and (U, V ) are unob-
servables with zero mean. Assume that an additional variable W , the instrumental
variable, is available which satisfies X∗2 = m(W )+Ã where W is conditional mean in-

dependent of Ã and V (see, for instance, Hausman et al. [1991], Schennach [2007], or
Ben-Moshe et al. [2017]). The conditional mean restriction identifies the parameters
β0, . . . , β3 since the function m(W ) = E[X2|W ] is identified. Using the instrumental
variables approach we can rewrite the model (2.2) as

Y = β0 + β3m(W )︸ ︷︷ ︸
g0(W )

+ β3Ã+ U︸ ︷︷ ︸
A0

+
(
β1 + β2m(W )︸ ︷︷ ︸

g1(W )

+ β2Ã︸︷︷︸
A1

)
X1

and thus, is a special case of the VRC model (1.1–1.2).

Example 2.2 (Monte Carlo Simulation under misspecification). This finite sample
example shows that falsely assuming linearity of varying coefficient functions may
lead to severe biases that go beyond typical approximation errors. Here, draws of re-
gressors (X,W ) are generated from the bivariate standard normal distribution. Let
Y = A0 +B1X where B1 = 2W 2 +A1 and random coefficients (A0, A1) are generated
independently of (X,W ) as follows: A1 is drawn from a mixture of normal distri-
butions, i.e., N (−1.5, 2) and N (1.5, 1) with weights 0.5, and independently from
A0 ∼ N (0, 1).
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Figure 1: Solid lines: true density fB1(·, w) with w = 0. Dotted lines: median and pointwise

95% confidence intervals. Left: Using OLS estimator of g1. Right: Using B-

splines estimator of g1. Sample Size: n = 1000. Monte Carlo iterations: 1000.

We implement our estimator using Hermite functions, as described in the Monte
Carlo section, but estimate the function g1(w) = 2w2 once via ordinary least squares
(OLS) and once via quadratic B-splines with three interior knots. Figure 1 shows on
the left the resulting estimator when g1 is estimated via OLS and on the right when
g1 is estimated via B-splines. From Figure 1 we see that ignoring the nonlinearity in
g1 can imply additional nonlinearities in the resulting estimator of the density of B1.
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2.2. Identification

This section provides assumptions under which the density fB(·, w) of Bw is identified
for any value w in the support of W . We now impose restrictions on the observed
and unobserved variables of our model.

Assumption 1. (i) X is independent of A. (ii) (X ′,W ′) is mean independent of
A, i.e., E[A|X,W ] = 0. (iii) g(·) = (g0(·), . . . , gd−1(·))′ is identified through the
conditional moment equation (2.1).

An independence assumption similar to Assumption 1 is common in the literature
on RC models with cross-sectional data (see, for instance, Beran [1993], Beran et al.
[1996], Hoderlein et al. [2010]). It should be also emphasized that the independence
assumption can often be justified in our model if the information in W about hetero-
geneity is rich enough and in this sense is milder than in the ordinary RC model where
g ≡ 0. Clearly, if W contains only elements in X and E[A] = 0 then Assumption 1
(ii) is implied by (i).

Assumption 1 (iii) is automatically satisfied if gl ≡ 0 for all 1 ≤ l ≤ d − 1.
Otherwise, Assumption 1 (iii) is satisfied if for all w in the support of W , the smallest
eigenvalue of E[XX ′|W = w] is bounded away from zero. This rank condition is
commonly imposed in the varying coefficient literature. In particular, it rules out that
the vector of regressors X has only values that are also contained in the vector W . It
is also possible to relax the rank condition by imposing functional form restrictions on
g, see Fan et al. [2003]. Throughout the paper, the conditional characteristic function
of Y − g(S) given X is denoted by h(x, t; g) = E

[
exp

(
it(Y − g(S))

)∣∣X = x
]
.

Assumption 2. (i) X has full support Rd−1. (ii)
∫
Rd−1

∫
R |t|

d−1|h(x, t; g)|dt dx <∞.

While large support conditions are often required in econometrics to ensure iden-
tification, Assumption 2 (i) can be relaxed. If the distribution of A has finite abso-
lute moments and is uniquely determined by its moments, then identification with
bounded support of X can be achieved by extrapolation, see Masten [2018] and
Hoderlein et al. [2017]. Assumption 2 (ii) imposes a mild regularity assumption on
the conditional characteristic function h.

The next result establishes identification of the VRC density. We make use of
identification of the varying coefficients through the conditional mean restriction (2.1).
Consequently, by employing the relation fB(b, w) = fA(b− g(w)) the following result
is due to Fourier inversion.

Lemma 2.1. Let Assumptions 1–2 be satisfied. Then, for all w in the support of W ,
the density of Bw satisfies

fB(b, w) =
1

(2π)d

∫
Rd−1

∫
R
|t|d−1 exp

(
− it(1, x′)(b− g(w))

)
h(x, t; g)dt dx.

Lemma 2.1 shows that the density fB(·, w) can be written as a transform of vary-
ing coefficient functions. Besides the shift of the conditional characteristic function
E[exp(itY )|X = x] to h(x, t; g) there is also a location shift by g(w). This corresponds
to shifts in frequency and time domain for the Fourier transform.
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3. Estimation and Inference

This section presents an estimator of the VRC density based on sieve minimum
distance and establishes its asymptotic properties. Subsection 3.1 introduces the
weighted sieve minimum distance estimator and motivates the use of Hermite func-
tions as sieve basis. In Subsection 3.2, the rate of convergence of the estimator of fB
is derived. Subsection 3.3 establishes the pointwise asymptotic distribution of linear
functionals of fB, where the density of potential outcome is one particular exam-
ple of interest. Subsection 3.4 presents a Bootstrap procedure to construct uniform
confidence bands.

3.1. The Sieve Minimum Distance Estimator

Estimation builds on the conditional characteristic function equation induced by the
model (1.1–1.2). We denote the Fourier transform by (Fφ)(u) :=

∫
Rd exp(iu′z)φ(z)dz

for any absolutely integrable function φ. Recall the notation of the conditional char-
acteristic function h(x, t; g) = E[exp(it(Y − g(S)))|X = x]. Independence of X and
A, as imposed in Assumption 1, immediately implies

E
[

exp
(
it(A0 + A′1X)

)∣∣X = x
]

=

∫
Rd

exp
(
it(1, x′)a

)
fA(a)da =

(
FfA

)
(t, tx)

and hence the relation(
FfA

)
(t, tx) = h(x, t; g) (3.1)

for all t ∈ R and x ∈ Rd−1. Moreover, relation (3.1) leads to∫
Rd−1

∫
R

∣∣∣(FfA)(t, tx)− h(x, t; g)
∣∣∣2dν(t)dx = 0, (3.2)

for some measure ν. Using this L2 criterion we construct a sieve minimum distance
estimator of fA and use a plug-in approach to estimate the VRC density fB. Below,
we show that the choice of the log-normal distribution as weighting measure ν is well
suited for our estimation problem.

The proposed sieve minimum distance estimator of the VRC density fB(·, w) is
based on the relation fB(b, w) = fA(b−g(w)) for any w in the support of W : Consider
the plug-in estimator

f̂B(b, w) = f̂A(b− ĝ(w)) (3.3)

where f̂A is a sieve minimum distance estimator of fA given by

f̂A ∈ arg min
f∈AK

{∫
Rd−1

∫
R

∣∣(Ff)(t, tx)− ĥ(x, t; ĝ)
∣∣2dν(t)dx

}
and AK is a sieve space of dimension K = K(n) < ∞ with basis functions {qk}k≥1.
The sieve dimension K = K(n) grows slowly with sample size n. Sieve estimation
is also convenient to impose additional constraints on the unknown functions. These
constraints, such as positivity, can be directly imposed on the sieve space AK . When
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the constraints are not binding, we may consider AK without constraints, which
then coincides with the linear sieve space AK =

{
φ(·) = β′qK(·) : β ∈ RK

}
where

qK(·) =
(
q1(·), . . . , qK(·)

)′
.

The unknown conditional characteristic function h is replaced by the plug-in series
least squares estimator

ĥ(x, t; ĝ) = pK(x)′P̂−1 1

n

n∑
j=1

exp
(
it(Yj − ĝ(Sj))

)
pK(Xj), (3.4)

where pK(·) =
(
p1(·), . . . , pK(·)

)′
is a vector of basis functions and we use the nota-

tion P̂ = n−1
∑n

j=1 p
K(Xj)p

K(Xj)
′. Thus, the same sieve dimension K (as for AK)

is used to approximate the conditional characteristic function h. The estimator ĝ
of the regression function g is based on the conditional mean restriction (2.1). We
do not impose an explicit form of this estimator but rather impose a rate condition
on the estimator ĝ to obtain our asymptotic results. In particular, ĝ can account
for generated regressors when W are control function residuals. Below, Example 3.2
provides an illustration of estimating g via series least squares. Although estimation
of the density fB involves two preliminary steps (estimation of h and g) it should
be emphasized that the estimation procedure is equivalent to a one-step sieve min-
imum distance estimator, which, additionally involves the conditional characteristic
equation h(X, t; g) = E

[
exp

(
it(Y −g(S))

)∣∣X] and the conditional moment equation
(2.1).

When no constraints are imposed, the sieve minimum distance estimator (3.3) is

of closed form. In this case, f̂B coincides with the double series least squares estimator

f̂B(b, w) = qK(b− ĝ(w))′Q−1

∫
Rd−1

∫
R

(
FqK

)
(−t,−tx) ĥ(x, t; ĝ)dν(t) dx

where

Q =

∫
Rd−1

∫
R

(
FqK

)
(−t,−tx)

(
FqK

)
(t, tx)′dν(t)dx (3.5)

is assumed to be nonsingular (at least for K sufficiently large). Nonsingularity of
Q is satisfied by Hermite functions (under mild conditions) which, as the following
example illustrates, are a convenient choice of bases for the sieve space AK .

Example 3.1 (Hermite Functions). Consider a linear sieve space AK spanned by
Hermite functions (which are orthonormalized Hermite polynomials) given for k =
0, 1, 2, . . . by

qk+1(t) =
(−1)k√
2kk!
√
π

exp(t2/2)
dk

dtk
exp(−t2).

These functions form an orthonormal basis in L2(R) =
{
φ :
∫
R φ

2(t)dt <∞
}

and are
convenient in our framework: Hermite functions are eigenfunctions of the Fourier
transform satisfying (Fqk+1)(t)/

√
2π = ikqk+1(t) =: q̃k+1(t). Thus, the double series
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least squares estimator of fB given in (3.3) simplifies to

f̂B(·, w) = qK(· − ĝ(w))′Q−1

∫
Rd−1

∫
R
q̃K(−t,−tx)ĥ(x, t; ĝ)dν(t) dx, (3.6)

where Q = (2π)d/2
∫
Rd−1

∫
R q̃

K(−t,−tx)q̃K(t, tx)′dν(t)dx. The implementation of this
estimator is straightforward. In the finite sample analysis, we also estimate the con-
ditional characteristic function h using Hermite functions.

We now consider the case of tensor product basis functions. We make use of the
notation IK1 for the K1-dimensional identity matrix and ⊗ for the Kronecker product.

Lemma 3.1. Let AK be a linear sieve space spanned by tensor product Hermite
functions qK(t, u) = qK0(t)⊗ qK1(u) where K = K0K1. Then, the matrix Q given in
(3.5) simplifies to

Q = Q0 ⊗ IK1 where Q0 = (2π)d/2
∫
R
|t|1−dq̃K0(−t)q̃K0(t)′dν(t).

Lemma 3.1 shows that given tensor product Hermite functions in a linear sieve
space only the dimension parameter K0 used to approximate the random intercept
induces potentially small eigenvalues of Q and hence, slow accuracy of estimators.
Thus, if we are willing to restrict the complexity of sieve estimation in terms of K0,
for instance, by imposing a fixed dimension K0, then the rate of convergence does not
suffer from an ill-posed inverse problem. This semiparametric specification provides
a numerically stable estimation procedure as we see in our Monte Carlo simulation
section.

Remark 3.1 (VRS Density Estimation). The proposed methodology implies closed
form estimators of densities of subvectors of the VRC vector. Consider the setup
of Lemma 3.1 with a linear sieve space and qK(t, u) = qK0(t) ⊗ qK1(u) are Hermite
functions. The double series least squares estimator (3.6) yields the estimator of the
VRS density fB1(·, w) given by

f̂B1(·, w) = qK1(· − ĝ1(w))′
∫
Rd−1

∫
R
bK0(t)q̃

K1(−tx)ĥ(x, t; ĝ)dν(t) dx (3.7)

where

bK0(t) :=

∫
R
qK0(a)′daQ−1

0 q̃K0(−t).

Here, K1 coincides with the dimension of basis functions used for the estimator
ĥ. Note that we impose restrictions on the weighting measure ν below such that∫
R |t|

1−ddν(t) is bounded above and away from zero and hence, Q0 is well defined.

Example 3.2 (Series estimation of the varying coefficients). We provide an explicit
estimator of the mean regression function g(s) = E[Y |S = s]. Series estimation of
g is convenient, in particular, as an additive structure of g can be easily imposed.
To do so, consider the basis functions pk, k ≥ 1, and introduce the vector pKd (s) =(
pK(w)′, x1p

K(w)′, . . . , xd−1p
K(w)′

)′ ∈ RdK. The series least squares estimator of g
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is given by

ĝ(s) = pKd (s)′P̂−1
d

n∑
j=1

Yjp
K
d (Sj),

where P̂d = n−1
∑n

j=1 p
K
d (Sj)p

K
d (Sj)

′. For instance, when using B-Splines as basis
functions, for asymptotic properties of such estimators see Xia and Li [1999], Fan
et al. [2003], Xue and Wang [2012], or Ma and Song [2015].

Notation. Introduce the norms ‖φ‖ν =
( ∫

R

∫
Rd−1 |φ(x, t)|2dxdν(t)

)1/2
and ‖φ‖Rd =( ∫

Rd |φ(u)|2du
)1/2

with associated Hilbert spaces L2
ν = {φ : ‖φ‖ν <∞} and L2(Rd) =

{φ : ‖φ‖Rd <∞}. Moreover, ‖ · ‖ and ‖ · ‖∞ denote the `2–norm and the supre-
mum norm. For a matrix A, the operator norm is denoted by ‖A‖. For a ran-
dom vector V the corresponding calligraphic capital letter V denotes its support.
Let ΠK : L2(Rd) → AK denote the least squares projection onto AK , i.e., ΠKf =
arg minφ∈AK

‖φ − f‖Rd for all f ∈ L2(Rd). Further, define the function γ : R → RK

given by γ(t) = P−1 E[exp
(
it(Y−g(S))

)
pK(X)] where we recall P = E[pK(X)pK(X)′].

We use the notation an ∼ bn for cbn ≤ an ≤ Cbn given two constant c, C > 0 and all
n ≥ 1.

3.2. Rate of Convergence

This subsection provides rates of convergence of the proposed estimators. In particu-
lar, we see that only the rate of the VRC density hinges on the minimal eigenvalues of
Q. On the other hand, it is shown below that the rate of convergence of the estimator
of the varying random slope B1 is not affected by the choice of ν.

We introduce an assumption required for our asymptotic results. Below, λmax(M)
denotes the maximal eigenvalue of a matrix M . Throughout the paper, (τk)k≥1 and
(λk)k≥1 denote nonincreasing sequences.

Assumption 3. (i) A random sample {(Yi, Xi,Wi)}ni=1 of (Y,X,W ) is observed. (ii)
The measure ν satisfies 0 <

∫
R |t|

1−ddν(t) <∞,
∫
R t

2dν(t) <∞ and ‖h(·, ·; g)‖ν <∞.
(iii) λmax

( ∫
Rd−1 p

K(x)pK(x)′dx
)

= O(1) and λmax

( ∫
Rd q

K(a)qK(a)′da
)

= O(1). (iv)
λmax(λKP

−1) = O(1) and supx∈Rd−1 ‖pK(x)‖2 = O(K) satisfying K log(n) = o(nλK).
(v) λmax(τKQ

−1) = O(1) and ‖F(ΠKfA − fA)‖2
ν = O(τK‖ΠKfA − fA‖2

Rd).

Assumption 3 (ii) imposes a mild restriction on the weighting measure ν and is
satisfied, for instance, if ν is the log-normal distribution. The maximal eigenvalue
restriction imposed in Assumption 3 (iii) is automatically satisfied if {pk}k≥1 and
{qk}k≥1 form orthonormal bases in L2(Rd−1) and L2(Rd), respectively. Assumption 3
(iv) allows the minimal eigenvalues of P to tend to zero, see also Chen and Christensen
[2015], who consider a similar restriction on the growth of basis functions. This
condition holds for Hermite functions, which are uniformly bounded, but also for
polynomial splines, Fourier series and wavelet bases, see also Belloni et al. [2015]
for further discussion and extensions of Newey [1997]. It is well known, that the
smallest eigenvalue of P is uniformly bounded away from zero if {pl}l≥1 forms an
orthonormal basis and fX is uniformly bounded away from zero on the support of
X. Thus, Assumption 3 (iv) is particularly suited in our case where a large support

11



assumption of X is required for identification. Here, λK has the interpretation of
a truncation parameter in estimation problems to ensure that the denominator is
bounded away from zero, see Breunig and Hoderlein [2018]. Assumption 3 (v) imposes
a rate restriction on the minimal eigenvalue of the matrix Q relative to (τk)k≥1.
Assumption 3 (v) further specifies a link of the sieve approximation error on the RC
density fA between the “strong” norm ‖ · ‖Rd and the “weak” norm ‖ · ‖ν . Note
that Assumption 3 (v) is only required for estimating the VRC density but not for
estimating the VRS density. Such stability conditions are commonly imposed in
the literature on nonparametric instrumental variable estimation, see, for instance,
Blundell et al. [2007] or Chen and Pouzo [2012], but rely on mapping properties of an
unknown conditional expectation operator. In addition, in VRC models it is possible
to provide primitive conditions, as we see below.

Proposition 3.2. Let ν̃(t) := |t|1−d(dν/dµ)(t) where µ denotes the Lebesgue measure
and assume that {qk}k≥1 is an orthonormal basis in L2(Rd).

(i) Suppose that, for some constant 0 < c < 1, for all n ≥ 1 and any non-zero
vector a ∈ RK the inequality∫

R

∣∣a′(FqK)(t)
∣∣2 1 {ν̃(t) < τK}µ(dt) ≤ c

∫
R

∣∣a′(FqK)(t)
∣∣2µ(dt) (3.8)

holds. Then, the smallest eigenvalue of τ−1
K Q is bounded away from zero and

bounded above.

(ii) If ∑
l>K

∫
R

∣∣(Fql)(t)∣∣2 ν̃(t)dµ(t) = O(τK) (3.9)

then ‖F(ΠKfA − fA)‖2
ν = O

(
τK‖ΠKfA − fA‖2

Rd

)
.

In the case of Hermite functions, condition (3.8) requires ν to be sufficiently heavy

tailed while condition (3.9) requires
∫
R

∣∣(Fql)(t)∣∣2 ν̃(t)dµ(t) to be sufficiently small for
all l > K. Both conditions impose restrictions on the weighting measure ν and the
basis functions {qk}k≥1 but do not on the unknown density fA itself. The following
example discusses the log-normal distribution as a weighting measure and provides
primitive conditions for inequality (3.8).

Example 3.3 (Log-normal weighting). The weighting measure ν is given by the dis-
tribution Lognormal(0, σ2) for some σ > 0. Thus, the function ν̃ as introduced in
Proposition 3.2 coincides with ν̃(t) = exp

(
− (log t)2/(2σ2)

)
/(
√

2πσ td) for all t ≥ 0.

In this case, ν̃(t) < τK if and only if exp
(
− (log t)2/(2σ2)

)
< τK

√
2πσtd which holds

for all t ≥ 0 satisfying

(log t)2/(2σ2) + d(log t) + log
(√

πστK
)
> 0.

Note that Hermite functions have most of its support close to zero when K is chosen
moderately and hence, inequality (3.8) is always satisfied for τK sufficiently small. The
decay of the eigenvalues of Q can be directly computed via numerical approximation
of the integral.
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We impose regularity conditions on the unknown functions of interest. To do so,
we introduce the space of square integrable functions L2

S =
{
φ : ‖φ‖S :=

√
Eφ2(S) <

∞
}

. Further, we define the class of functions G := G(n) := {φ = β′pKd : ‖φ− g‖∞ ≤√
K/n}. The covering number N(G, ‖ · ‖S, ε) is the minimal number of L2

S–balls of
radius ε needed to cover G.

Assumption 4. (i) ‖ΠKfA − fA‖Rd = O(K−ζ/d) and ‖γ′pK − h‖ν = O(K−ρ/(d−1)).
(ii) fA is continuously differentiable with square integrable Jacobian matrix DfA. (iii)
‖ĝ − g‖2

∞ = Op(K/n) and ‖ĝ(w) − g(w)‖2 = Op

(
K/(nτKλK)

)
for all w ∈ W. (iv)

There exists Cn > 0 with Cn
√
K/n = O(1) such that

∫ 1

0

√
1 + logN(G, ‖ · ‖S, ε)dε ≤

Cn <∞.

Assumption 4 (i) captures regularity conditions on the density fA and the condi-
tional characteristic function h via sieve approximation errors. Example 3.4 charac-
terizes the sieve approximation condition when using Hermite basis functions relative
to the smoothness of the unknown function of interest. For further discussion and
other examples of sieve bases, see Chen [2007]. Assumption 4 (ii) imposes a mild
smoothness condition on the density fA. Assumption 4 (iii) imposes rate restrictions
on the varying coefficients estimator. Assumption 4 (iv) is a regularity condition on
the function class G and was also imposed in the literature, for instance, in Chen and
Pouzo [2012, Lemma C.3 (i)].

Example 3.4 (Hermite functions (cont’d)). Consider again the case where the linear
sieve space AK is spanned by Hermite functions. If fA has 2ζ derivatives such that∫
f (ι)(x)dx < ∞ for all ι ≤ 2ζ then the sieve approximation condition ‖ΠKfA −

fA‖Rd = O(K−ζ/d) in Assumption 4 (i) is automatically satisfied due to Lemma 2
of Coppejans and Gallant [2002]. See also Bongioanni and Torrea [2009] where a
Sobolev space for Hermite functions is constructed (and also in the case of Laguerre
polynomials). On the other hand, if A has compact support and fA belongs to a Sobolev
ellipsoid of smoothness ζ then the sieve approximation error O(K−ζ/d) is obtained for
B-splines, wavelets, or trigonometric basis functions, see Chen [2007].

Consider first estimation of the joint density of the VRC vector B holding ob-
served characteristics fixed. The following theorem provides the rate of convergence
in L2(Rd)–norm of the estimator f̂B(·, w) given in (3.3) for some fixed w ∈ W .

Theorem 3.1. Let Assumptions 1–4 be satisfied. Then for any w ∈ W:∫
Rd

∣∣f̂B(b, w)− fB(b, w)
∣∣2db = Op

(
(τKλK)−1

(
n−1K +K−2ρ/(d−1)

)
+K−2ζ/d

)
.

We see from the previous result that the parameters τK and λK , which capture
the minimal eigenvalues of Q and P , respectively, slow down the rate of convergence.
As the weighting measure ν influences the eigenvalues of Q it does also affect the rate
of convergence of the joint density of the varying random coefficient B. Note that the
optimal choice of the dimension parameter K is lower than for usual nonparametric
estimation problems and relative to the value of τK and λK .

We now provide the rate of convergence in L2(Rd)–norm of f̂B when the dimension
parameter K is chosen such that the variance part (nτKλK)−1K and the squared bias
part K−2ζ/d are of the same order. For ease of exposition we assume that λK is
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uniformly bounded away from zero, which requires a sufficiently large support of
regressors X. We further consider the case that n−1K dominates the squared bias
part of estimating h which is K−2ρ/(d−1). The next result immediately follows from
Theorem 3.1 and hence, its proof is omitted.

Corollary 3.1. Let Assumptions 1–4 be satisfied. Further if λK is uniformly bounded
away from zero, τK ∼ K−2α/d, K ∼ nd/(2ζ+2α+d) and if

α + ζ

d
≤ ρ

(d− 1)
(3.10)

holds, then for any w ∈ W:∫
Rd

∣∣f̂B(b, w)− fB(b, w)
∣∣2db = Op

(
n−2ζ/(2ζ+2α+d)

)
.

As we see from the previous result, the usual rate of convergence for ill-posed
inverse problems is obtained if K levels variance and squared bias, see also Hoderlein
et al. [2010] in the case of kernel estimation in ordinary RC models. Yet in contrast
to Hoderlein et al. [2010] (see their Section 4.3), no heavy-tailedness of covariates
X is required for our convergence results. In particular, Hohmann and Holzmann
[2016] showed under Gaussian white noise that the rate of convergence can be much
slower, even severely ill-posed, under lighter tails of X. Also note that the condition
(3.10) ensures that n−1K dominates the squared bias of estimating h and is only a
mild restriction. Indeed, if, for instance, d = 2 then the usual rate of convergence is
obtained if 2ρ ≥ ζ + α.

Below, we establish a rate of convergence for estimating the density of the varying
random slope B1 holding observed characteristics W fixed. The next results show
that for estimating the VRS vector B1 when we restrict the sieve dimension, to
approximate the random intercept, to be bounded. In this case the rate of convergence
does not depend on the eigenvalue behavior of the matrix Q.

Theorem 3.2. Let Assumptions 1, 2, 3 (i)–(iv), and 4 be satisfied where qK(t, u) =
qK0(t) ⊗ qK1(u) are tensor product Hermite functions with K0 = O(1). Then the

closed form estimator f̂B1(·, w) given in (3.7) satisfies for any w ∈ W:∫
Rd−1

∣∣f̂B1(b1, w)− fB1(b1, w)
∣∣2db1 = Op

(
λ−1
K1

(
n−1K1 +K

−2ρ/(d−1)
1

)
+K

−2ζ/(d−1)
1

)
.

Note that the condition K0 = O(1) together with Assumption 4 (i), that is,
‖ΠKfA− fA‖Rd = O(K−ζ/d), imposes a semiparametric restriction on the RC density
fA. We emphasize that the parametric restriction concerns only the random intercept
A0 but not the random slope A1. Also the rate of convergence derived in the previous
result depends on the dimension parameter K1 only. This is due to the definition of
our estimator where the dimension of basis functions used to estimate the conditional
characteristic function h coincides with the dimension parameter K1, see also Remark
3.1. Similarly to Theorem 3.2, convergence rates of subvector VRS densities can be
derived.

The following result provides the rate of convergence when the dimension param-
eter K1 such that the variance part (nλK1)

−1K and the squared bias K
−2ζ/d
1 are of

the same order and n−1K1 dominates the squared bias of estimating h. Again we
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consider the case where λK1 is uniformly bounded away from zero. The next result
immediately follows from Theorem 3.2 and hence, its proof is omitted.

Corollary 3.2. Let the conditions of Theorem 3.2 be satisfied. Further, if λK1 is
uniformly bounded away from zero, K1 ∼ n(d−1)/(2ζ+d−1) and ζ ≤ ρ holds, then the
closed form estimator f̂B1(·, w) given in (3.7) satisfies for any w ∈ W:∫

Rd−1

∣∣f̂B1(b, w)− fB1(b, w)
∣∣2db = Op

(
n−2ζ/(2ζ+d−1)

)
.

As we see from the previous result, the rate of convergence coincides with the
usual optimal rate in nonparametric density of dimension d − 1. We see that the
rate for estimating the density of the varying random slope B1 is not affected by the
ill-posedness under the condition K0 = O(1).

3.3. Pointwise Limit Theory for Linear Functionals

This subsection is about inference of linear functionals `(·) : L2(Rd)→ R of the den-
sity fB(·, w) for some realization w of W . Examples of linear functionals are, but
are not limited to, the point-evaluation functional or (weighted) averages of fB(·, w).
The linear functional `(fB(·, w)) is estimated below using the plug-in sieve estimate

estimator `(f̂B(·, w)). This subsection provides a limit theory for this plug-in estima-
tor.

As mentioned in the introduction, an important example of a linear functional of
fB is the density of the potential outcome Y s = g(w)′x + A′x, where s = (x′, w′)′.
Indeed, the density of Y s can be written as2

fY (y, s) =

∫
Rd−1

fB
(
(y − x′b1, b1), w

)
db1.

Also the weighted averages of potential outcomes
∫
R ω(y)fY

(
y, s
)
dy for some function

ω is a linear functional of fB(·, w). In particular, we obtain the distribution of the
potential outcomes which is relevant also in the context of quantile treatment effects.

The asymptotic distribution result below requires the following additional notation
and assumptions. We introduce the sieve variance

vK(w) = `
(
qK(· − g(w))

)′
Q−1/2 ΣQ−1/2`

(
qK(· − g(w))

)
(3.11)

where

Σ =

∫
R

∫
R
R(s)P−1 E

[
pK(X)ρ(s)ρ(−t)pK(X)′

]
P−1R(−t)′dν(s)dν(t),

using the notation ρ(t) = exp(it(Y −g(S)))−h(X, t; g) and the matrix valued function
R(t) = Q−1/2

∫
Rd−1(FqK)(t, tx)pK(x)′dx. We replace the sieve variance vK by the

estimator

v̂K(w) = `
(
qK(· − ĝ(w))

)′
Q−1/2 Σ̂Q−1/2`

(
qK(· − ĝ(w))

)
, (3.12)

2This relation follows immediately by the well known property fA0+A′1x
(c) =

∫
Rd−1 fA

(
c−u′x, u

)
du.
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where the matrix Σ is replaced by

Σ̂ =

∫
R

∫
R
R(s)P̂−1 1

n

n∑
j=1

pK(Xj)ρ̂j(s)ρ̂j(−t)pK(Xj)
′P̂−1R(−t)′dν(s)dν(t),

with ρ̂j(t) = exp(it(Yj − ĝ(Sj))) − ĥ(Xj, t; ĝ). In order to derive the asymptotic
distribution of our estimator we require addition assumptions. Below, we denote the
inverse Fourier transform by (F−1φ)(u) = (2π)−d

∫
Rd exp(−itu)φ(t)dt.

Assumption 5. (i) The minimal eigenvalue of λ−1
K Σ is uniformly bounded away

from zero. (ii) It holds C2
nK

2 = o(nλK). (iii) For all w ∈ W:
√
n`
(
ΠKfA(· −

g(w))−fA(·−g(w))
)

= o
(√

vK(w)
)
,
√
n`
(
[F−1(γ′pK−h)](·−g(w))

)
= o
(√

vK(w)
)
,

and
√
n
∥∥ĝ(w) − g(w)

∥∥ = op
(√

vK(w)
)
. (iv) The sieve space AK is linear: AK ={

φ(·) = β′qK(·) : β ∈ RK
}

and ql, l ≥ 1, are continuously differentiable. (v) It holds∫
R ‖R(t)‖2dν(t) = O(1).

Assumption 5 (i) implies a lower bound on the sieve variance which we require to
achieve asymptotic distribution results of the estimator. This condition implies that
the sieve variance attains the lower bound vK(w) ≥ CΣ ‖`

(
qK(· −g(w))

)′
Q−1/2‖2/λK

for some constant CΣ > 0. For instance, when `(·) is the point evaluation functional
and Q is a diagonal matrix with polynomial decay of order −2α/d we obtain vK(w) ≥
CΣ K

(2α+d)/d provided that λK is bounded from below and ‖qK(a−g(w))‖2 ≥ K which
holds at most points a ∈ A (see Belloni et al. [2015]). Consequently the lower bound
of the sieve variance corresponds to the mildly ill-posed case in Chen and Pouzo [2015,
p. 1053]. Assumption 5 (ii) imposes a stronger rate requirement on K than the one
required for consistency. Assumption 5 (iii) specifies a pointwise sieve approximation
error and has the interpretation of an undersmoothing condition, which is required
to ensure that the approximation bias is asymptotically negligible. Assumption 5
(iv) restricts the sieve space to be linear and, in particular, that constraints on den-
sity estimation, such as positivity, are not binding. If such constraints are binding
asymptotically then such shape restriction can lead to non-normal distributions. As-
sumption 5 (v) is automatically satisfied if the basis under consideration is given by
Hermite functions.

Assumption 6. It holds ζn = o(1) where ζn =
√
K log(n)/(nτKλK) + K1/2−ρ/(d−1)

and ‖γ′pK − h‖ν = O(K−ρ/(d−1)).

Assumption 6 strengthens the rate conditions imposed in Assumption 5 and is
required for consistent estimation of the sieve variance vK(w). The next result estab-

lishes the asymptotic distribution of the estimator `(f̂B(·, w)).

Theorem 3.3. Let Assumptions 1–3, 4 (ii)–(iv), and 5 be satisfied. Then, for any
w ∈ W:√

n/vK(w)
(
`
(
f̂B(·, w)

)
− `
(
fB(·, w)

)) d→ N (0, 1).

If, in addition Assumption 6 holds, then√
n/v̂K(w)

(
`
(
f̂B(·, w)

)
− `
(
fB(·, w)

)) d→ N (0, 1).
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A direct implication of the previous results concerns inference on functionals of
the VRS density fB1(·, w). The next result is based on plug-in series estimator (3.7)
using tensor product Hermite functions. In this case, the sieve variance simplifies to

vK1(w) = `
(
qK1(· − g(w))

)′
Σ1`
(
qK1(· − g(w))

)
where the matrix Σ1 is coincides with Σ except that K replaced by K1 and R(t)
replaced by

∫
Rd−1 bK0(t)q̃

K1(tx)pK1(x)′dx, where the function bK0 is given in Remark
3.1. Now if K0 = O(1) a lower bound for the sieve variance is vK1(w) ≥ CΣ1 ‖`

(
qK1(·−

g(w))
)
‖2/λK1 for some constant CΣ1 > 0. When λK1 is uniformly bounded away from

zero this corresponds to the usual lower bound in well posed estimation problems,
see Newey [1997] or Belloni et al. [2015]. An estimator v̂K1(w) of the sieve variance

vK1(w) is obtained by replacing the covariance matrix Σ1 by Σ̂1 which is analog to

the definition of Σ̂. The next result is an immediate consequence of Theorem 3.3 and
hence its proof is omitted.

Corollary 3.3. Let Assumptions 1, 2, 3 (i)–(iv), 4 (ii)–(iv), 5, and 6 be satisfied
where qK(t, u) = qK0(t) ⊗ qK1(u) are tensor product Hermite functions with K0 =
O(1). Then, for any w ∈ W:√

n/v̂K1(w)
(
`
(
f̂B1(·, w)

)
− `
(
fB1(·, w)

)) d→ N (0, 1).

3.4. Bootstrap Uniform Confidence Bands

This subsection provides a bootstrap procedure to construct uniform confidence bands
for fB(·, w) and establishes asymptotic validity of it. The multiplier bootstrap proce-
dure is as follows. Let (ε1, . . . , εn) be a bootstrap sequence of i.i.d. random variables
drawn independently of the data {(Y1, X1,W1), . . . , (Yn, Xn,Wn)}, with E[εj] = 0,
E[ε2

j ] = 1, E[|εj|3] <∞ for all 1 ≤ j ≤ n. Common choices of distributions for εj in-
clude the standard Normal, Rademacher, and the two-point distribution of Mammen
[1993]. Further, P∗ denotes the probability distribution of the bootstrap innovations
(ε1, . . . , εn) conditional on the data. For any w ∈ W , we introduce the bootstrap
process

Z∗(b, w) =
qK(b− ĝ(w))′Q−1/2√

v̂K(b, w)

(
1√
n

n∑
j=1

∫
R
R(t)ρ̂j(t)dν(t)P̂−1pK(Xj) εj

)
.

Here, we use the notation vK(b, w) and v̂K(b, w) for the sieve variance and its estimator
given in (3.11) and (3.12) in case of point-evaluation functionals. Let C be a closed
subset of Rd. Let ∆ be the standard deviation semimetric on C of the Gaussian
Process Z(b, w) = qK(b − g(w))′Q−1/2Z/

√
vK(b, w) with Z ∼ N (0,Σ) defined as

∆w(b1, b2) = (E[(Z(b1, w)− Z(b2, w))2])1/2, see e.g. van der Vaart and Wellner [2000,
Appendix A.2]. To do so, we introduce the notation N(C,∆, ε) for the ε-entropy of C
with respect to norm ∆.

Assumption 7. (i) C is compact and (C,∆) is separable for each n ≥ 1. (ii) There
exists a sequence of finite positive integers cn such that 1 +

∫∞
0

√
logN(C,∆w, ε)dε =

O(cn). (iii) There exists a sequence of positive integers rn with rn = o(1) such that
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K5/2λ−2
K = o(r3

n

√
n), rncn = O(1), and

λ−1
K K

√
log(n)

n
+
√
ζn

(
cn+K(−ρ)/(d−1)+sup

b∈C

√
n

vK(b, w)
|ΠKfB(b, w)−fB(b, w)|

)
= o(rn).

(iv) It holds supb∈C

(
‖qK

(
b− g(w)

)′
Q−1/2‖2/vK(b, w)

)
= O(1).

Assumption 7 is similar to Chen and Christensen [2018, Assumption 6] who es-
tablish asymptotic validity of uniform confidence bands in nonparametric instrumen-
tal variable estimation. Assumption 7 (ii) is a mild regularity assumption, see also
Chen and Christensen [2018, Remark 4.2] for sufficient conditions. Assumption 7 (iii)
strengthens the rate conditions imposed on the dimension parameter K and imposes
a uniform sieve approximation error.

The next theorem establishes the validity of the bootstrap for constructing uniform
confidence bands for the VRC density fB(·, w). The proof of this result is based on
strong approximation of a series process by a Gaussian process, and uses an anti-
concentration inequality for the supremum of the approximating Gaussian process
obtained in Chernozhukov et al. [2014]. For sieve minimum distance estimation in
nonparametric instrumental variable estimation this is also exploited by Chen and
Christensen [2018].

Theorem 3.4. Let the assumptions of Theorem 3.3 and Assumption 7 hold. Then
for all w ∈ W:

sup
s∈R

∣∣∣∣P(sup
b∈C

∣∣∣∣√ n

v̂K(b, w)

(
f̂B(b, w)− fB(b, w)

)∣∣∣∣ ≤ s

)
− P∗

(
sup
b∈C
|Z∗(b, w)| ≤ s

)∣∣∣∣ = op(1).

Theorem 3.4 establishes consistency of the sieve score bootstrap procedure for
estimating the critical values of the uniform sieve t-statistic process for the VRC
model. The result also contributes to the literature on ordinary RC models, as up
to now, only asymptotic validity of pointwise confidence intervals is established and
complements the results of Dunker et al. [2019] who proposed tests for qualitative
features of the ordinary RC’s density.

4. Simulation Studies and an Empirical Illustration

This section provides a finite sample analysis of the proposed estimator. Subsection
4.1 presents the finite sample performance of the proposed estimator in Monte Carlo
simulations. Subsection 4.2 applies the procedure to analyze heterogeneity in income
elasticity of the willingness to pay for rent in an empirical illustration.

4.1. Simulation Studies

This subsection presents the finite-sample performance of the estimator of the varying
random slope in a Monte Carlo simulation study. The experiments use a sample size
of 1000 and 1000 Monte Carlo replications in each setting. In each experiment, i.i.d.
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draws of regressors (X,W ) are generated from(
X
W

)
∼ N

((
0
0

)
,

(
σ2 0
0 1

))
where the variance σ2 is varied in the experiments. Realizations of A are generated
independently of (X,W ) as follows: The random slope parameter A1 is drawn either
by a mixture of normal distributions, i.e., N (−1.5, 1) and N (1.5, 0.5) with weights
0.5, or by the Gamma distribution Γ(3, 1). In each case, the random intercept is
generated independently of the random slope by A0 ∼ N (0, 1). Realizations of the
dependent variable Y are obtained by

Y = A0 +XB1, (4.1)

with varying random coefficients

B1 = g1(W ) + A1 (4.2)

where in the experiments either g1(w) = sin(w) or g1(w) = exp(|w|)− 1.
In this simulation study, a linear sieve space with Hermite functions is used and

no additional constraints are imposed. Consequently, the resulting estimator of the
density of B1 is of closed form as given in (3.7). Numerical integration is used to com-
pute the integrals in equation (3.7) based on the Adaptive Gauss-Kronrod quadrature
(using the pracma package in R). We keep the dimension for the random intercept
fixed with K0 = 1. The conditional characteristic function h is estimated via series
least squares as in equation (3.4) where the basis functions coincide with the Hermite
functions of dimension K1. For the estimation of the varying coefficient function g1

we use quadratic B-spline bases with interior knots placed evenly. More precisely, we
use two interior knots when using the function g1(w) = sin(w) and four knots in the
case of g1(w) = exp(|w|)− 1. As weighting measure ν, we choose the log-normal dis-

Varying Coefficient St. Dev. of X MISE(f̂B1) for sieve dim.

g1(w) σ K1 = 4 K1 = 5 K1 = 6

sin(w) 1/2 0.0373 0.0642 0.3094√
1/2 0.0184 0.0167 0.0318

1 0.0140 0.0075 0.0092

2 0.0129 0.0069 0.0056

exp(|w|)− 1 1/2 0.0267 0.0672 0.3110√
1/2 0.0156 0.0189 0.0336

1 0.0126 0.0088 0.0106

2 0.0125 0.0091 0.0070

Table 1: Monte Carlo Results for the MISE(f̂B1) for varying values of σ and different func-

tions of g1. Bold letters show values of MISE(f̂B1) minimized w.r.t. K1.

tribution as motivated in Example 3.3, more precisely, ν is given by Lognormal(0, σ2
ν)

where σν = 1/4.
For the implementation of the estimator it is required to choose the dimension
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parameter K1, given that we have fixed the dimension K0 = 1. In the Monte Carlo
experiments we choose these parameters to minimize the mean integrated squared
error. Table 1 reports the mean integrated squared error of the estimator f̂B1(·, w) of
fB1(·, w) when w = 0 which is given by

MISE(f̂B1) = E
∫ 5

−5

∣∣f̂B1(b, 0)− fB1(b, 0)
∣∣2db

where the expectation is over the mean of all simulations.
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Figure 2: The first column shows the median of the estimators f̂B1(·, w), with their point-

wise 95% confidence intervals when g1(w) = sin(w). The second column is equiv-

alent but uses g1(w) = exp(|w|) − 1. The solid lines depict the true density

fB1(·|w) where w = 0.

Table 1 depicts values of MISE(f̂B1) for different values of σ2 and different func-

tions g1. In each case, the MISE(f̂B1) is provided for different sieve dimensions K1,
where the minimized value (w.r.t. the sieve dimension K1) is shown in bold letters.

From Table 1 we see, not surprisingly, that the MISE(f̂B1) decreases as the variance
of X becomes larger. In particular, the optimal choice of the dimension parameter
K1 increases as the variance σ2 becomes larger. This is in line with the rate of con-
vergence as derived in Theorem 3.2, see also the discussion thereafter. The MISE
when g1(w) = exp(|w|) − 1 is larger as in the other case which is due to irregularity
of the function g1 at zero.

Figure 2 shows the estimation results when the true distribution of B1 is given
by an equally weighted mixture of N (−1.5, 2) and N (1.5, 1). The solid line depicts
the true density fB1(·, w) with w = 0, the thick dashed line depicts the median of the
estimators, and the thin dashed lines show the 95% percent pointwise confidence inter-
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Figure 3: As in Figure 2 but where the true density, depicted as solid line, is the density

of Γ(3, 1).

vals. The number of Hermite basis functions K1 is chosen to minimize the MISE(f̂B1)
as shown in Table 1, i.e., K1 = 5 when σ2 = 1 and K1 = 6 when σ2 = 2. We see that
as the variance σ2 increases (lower panel of the figure) the median of the estimators
is closer to the true density. Although there is no positivity constraint imposed, the
closed form median of the estimator together with their 95% confidence intervals are
non-negative between −5 and 5. As the variance of X increases the pointwise confi-
dence intervals become more narrow, which is in line with the pointwise asymptotic
theory. This indicates the difficulty of estimating random coefficients in the case
where X has light tails. Nevertheless, we see that the estimator performs well even
if X has a small variance and is far from heavy tailed. Figure 2 also shows that the
procedure is robust even against irregularities of the varying coefficient function, i.e.,
when g1 coincides with g1(w) = exp(|w|)− 1.

Figure 3 depicts the estimator of fB1 in the case when A1 is generated by the
Gamma distribution Γ(3, 1). For the implementation of the estimator we use the
same choice of tuning parameters as described above in the normal mixture case.
Again we find the 95% confidence interval and the median are more accurate when
the variance of X is increased from 1 to 2 and g1 coincides with the sine function. In
all cases, we see that the true density function lies outside of the confidence intervals
for b1 ∈ [7, 9]. This bias is due to a larger variance of A1, i.e., Var(A1) = 3, which
implies that higher order Hermite functions are required to fully accurately capture
the finite sample support of A1.

We finally present estimation results when not only the random slope (again we
consider A1 ∼ Γ(3, 1)) but also the random intercept is not normally distributed but
A0 ∼ U(0, 1). We use the same implementation as above but normalize the VRS
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density estimator to integrate to one. Since we only use the Hermite basis function
of order zero to account for the random slope the estimator is misspecified in this
direction. The estimation results are shown in Figure 4. From this figure we see that
misspecification of the density of A0 has only a minor effect on the accuracy of the
VRS density estimator after normalization. This is in contrast to misspecification
of the functional form of varying coefficient functions gl which can lead to severe
nonlinear biases, see Example 2.2.
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Figure 4: As in Figure 2 but where the true density, depicted as solid line, is the density

of Γ(3, 1) and A0 ∼ U(0, 1). Estimators are normalized to integrate to one.

4.2. An Empirical Illustration

In this subsection, the methodology is applied to analyze heterogeneity in income
elasticity of demand for housing. Heterogeneity plays an important role in classi-
cal consumer demand and might be driven by unobserved heterogenous preferences.
In the empirical illustration we use data from the German Socio-Economic Panel
(SOEP). While the SOEP is a longitudinal survey we restrict ourselves to the year
2013. We only consider individuals who do not have missing observations in rent,
income, and size of the apartment, which results in a sample of size n = 7230.

We are interested in assessing the heterogenous effect of household income on
households’ willingness to pay for rent. Formally, let us consider the empirical VRC
model

Y = B1X + g0(W ) + A0,
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and

B1 = g1(W ) + A1,

where Y denotes the log monthly rent, X denotes the logarithm of the household
net income per month, and W is the logarithm of the size of the housing unit in
square meters.3 The empirical VRC model thus imposes functional forms rather
than letting the conditional distribution of unobserved heterogeneity given housing
characteristics unrestricted. The following table provides summary statistics of the
relevant variables.

Min. 1st Qu. Median Mean 3rd Qu. Max. St. Dev.

Y : log rent 2.485 5.858 6.120 6.113 6.389 8.517 0.444
X: log hh. income 5.193 7.162 7.550 7.520 7.901 10.130 0.569
W : log size housing 2.303 4.060 4.263 4.253 4.477 5.886 0.371

The interpretation of B1 is that of a heterogeneous elasticity. Independence of
the heterogeneous income elasticity of demand and income itself might be difficult to
justify if no additional covariates are included to explain B1. We compute the variance
of B1 from the empirical analog of E[(Y −g1(W ))2X]−E[(Y −g1(W ))X]2 which yields
the value of 0.0431, where g1 is estimated using B-splines as described below. The log
size of housing W explains much of the variation in B1, i.e., if g1 ≡ 0 then variance of
B1 is given by 0.5899. The small variance does not prevent estimating the density of
B1 using global basis functions, such as Hermite functions, because we can transform
the model such that B1 has , e.g., variance one and then back–transform the density
function of B1. Here, g1 is replaced by a B-spline estimator as explained below.
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Figure 5: Left: B-spline estimator of g0. Right: B-spline estimator of g1.

The estimator f̂B1 is implemented as described in the previous section. The num-
ber of Hermite functions used is K0 = 1 and K1 = 7. The weighting measure ν is

3As stated in Harrison and Rubinfeld [1978], rental prices reflect the market’s current valuation of
housing attributes, while housing values reflect expectations about future as well as present hous-
ing conditions. Hence, conceptually it is more appropriate to use rental prices when estimating
hedonic functions for housing demand.
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again given by Lognormal(0, σ2
ν) with σν = 1/4, as in the Monte Carlo section. For

estimation of the functions g0 and g1 we use again quadratic B-spline bases functions
with three interior knots and follow Example 3.2. Figure 5 depicts the B-spline esti-
mators for the varying coefficient functions g0 and g1. We see that both estimators
are nonlinear on the support of W .

For the bootstrap uniform confidence bands, we consider one representative sam-
ple and generate the bootstrap innovations ε according to the two-point distribution
suggested by Mammen [1993], i.e., ε equals (1−

√
5)/2 with probability (1+

√
5)/(2

√
5)

and (1 +
√

5)/2 with probability 1− (1 +
√

5)/(2
√

5). Based on the estimator we gen-
erate the bootstrap process Z∗(·|w) as described in Subsection 3.4. The results are
based on 1000 bootstrap iterations.
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Figure 6: Solid line depicts the sieve estimator of fB1 based on K1 = 7 Hermite functions.

Dotted lines depict the 95% uniform confidence bands based on 1000 bootstrap

iterations.

Figure 6 depicts the estimator for the density of B1 evaluated at the mean of W
which is w = 4.253. Note that B1 can be directly interpreted as heterogenous marginal
effect. From this figure we see that the estimated density has support between −0.2
and 0.8. The uniform confidence bands show that the support is significantly positive
(at 0.05 nominal level) only at −0.05 and 0.6. The estimated density is clearly not
symmetric. We also see that the density is positively skewed and is more heavy tailed
on the right hand side. This is reasonable as one would expect the response of a
marginal increase of income to be skewed. It is also interesting to see that the 95%
uniform confidence sets are bounded away from zero.

5. Conclusion

This paper analyzes heterogeneity in VRC models. This model generalizes ordinary
RC models by including nonlinearities in observed characteristics, which might stem,
for instance, from measurement errors or control function residuals. A novel esti-
mator of the VRC density based on weighted sieve minimum distance is proposed.
Under semiparametric restrictions on the random intercept, our estimator of the VRS
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density is not affected by the ill-posedness that is associated with the nonparametric
estimation of the joint VRC density. We establish novel inference results, such as
uniform confidence bands, to adress uncertainty in VRC density estimation which
goes beyond what has been shown in ordinary RC models. We find that finite sample
estimation results are surprisingly stable when the sieve space is spanned by Hermite
functions. This also advocates the use of the proposed methodology in the context
of ordinary RC models. Finally, the methodology is applied to estimate the den-
sity of heterogeneous income elasticity of demand for housing, which is shown to be
highly skewed. The proposed estimator can also be extended to include nonlinear
index functions as in Lewbel and Pendakur [2017]. Yet the analysis of its asymptotic
properties is left to future research.

A. Appendix

Throughout the proofs, we will use C > 0 to denote a generic finite constant that
may be different in different uses. Further, for ease of notation we write

∑
j for

∑n
j=1

and
∫

for
∫
Rd or

∫
Rd−1 . Recall that ‖ · ‖ denotes the usual Euclidean norm, while for

a matrix A, ‖A‖ is the operator norm. Recall the notation P = E[pK(X)pK(X)′] and

P̂ = n−1
∑

j p
K(Xj)p

K(Xj)
′. We use the notation an . bn to denote an ≤ Cbn for all

n ≥ 1.

Proof of Lemma 2.1. The VRC model (1.1–1.2) yields by Assumption 1 (ii) the
conditional moment restriction E[Y |X,W ] = g0(W ) +

∑d−1
l=1 gl(W )Xl. The varying

coefficients functions gl, 0 ≤ l ≤ d−1, are identified through this conditional moment
restriction by Assumption 1 (iii) . Further, we obtain

E[exp(it(Y − g(S)))|X = x] = E[exp(it(A0 + A′1X))|X = x].

Since X is independent of A (see Assumption Assumption 1 (i)) we can rewrite this
equation using the notation of the Fourier transform for any x in the support of X as

h(x, t; g) = (FfA)(t, tx).

By the large support condition imposed on X in Assumption 1 (i) we can make use
of Fourier inversion to obtain

fA(a) =
1

(2π)d

∫
exp(−ia′u)(FfA)(u)du

=
1

(2π)d

∫ ∫
|t|d−1 exp

(
− it(1, x′)a

)
(FfA)(t, tx)dt dx

=
1

(2π)d

∫ ∫
|t|d−1 exp

(
− it(1, x′)a

)
h(x, t; g)dt dx,

where the integral on the right hand side is finite due to Assumption 1 (ii). This shows
identification of the RC density fA of A. Now identification of the VRC density
of Bw = g(w) + A follows immediately by employing the relationship fB(b, w) =
fA(b− g(w)).

Proof of Lemma 3.1. From the formula of the double series least squares estima-
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tor with Q given in (3.5) and from basic properties of the Kronecker product we
infer

Q = (2π)d/2
∫ ∫ (

q̃K0(−t)⊗ q̃K1(−tx)
)(
q̃K0(t)⊗ q̃K1(tx)

)′
dν(t)dx

= (2π)d/2
∫ ∫

q̃K0(−t)q̃K0(t)′ ⊗ q̃K1(−tx)q̃K1(tx)′dν(t)dx

= (2π)d/2
∫
|t|1−dq̃K0(−t)q̃K0(t)′dν(t)⊗

∫
q̃K1(−u)q̃K1(u)′du

= (2π)d/2
∫
|t|1−dq̃K0(−t)q̃K0(t)′dν(t)⊗ IK1

using that qK1 is a vector of Hermite functions which are orthonormal in L2(Rd−1).

Proof of Proposition 3.2. Proof of (i). Recall the definition ν̃(t) = |t|1−dν(t).
For some constant 0 < c < 1, for all n ≥ 1, and any a ∈ RK we have due to Parseval’s
Formula:

‖a‖2 =

∫ ∫
|a′ qK(t, u)|2du dt

=

∫ ∫
|a′ (FqK)(t, u)|2du dt

=

∫ ∫
|a′ (FqK)(t, tx)|2 |t|d−1

1{ν̃(t) ≥ τK}dx dt

+

∫ ∫
|a′ (FqK)(t, u)|2 1{ν̃(t) < τK}du dt

≤ τ−1
K

∫ ∫
|a′ (FqK)(t, tx)|2 |t|d−1dx dν̃(t) + c

∫ ∫
|a′ (FqK)(t, u)|2du dt

= τ−1
K

∫ ∫
|a′ (FqK)(t, tx)|2dx dν(t) + c ‖a‖2.

Consequently, we obtain τKIK . Q.

Proof of (ii). Using the series expansion of f given by f =
∑

k≥1〈f, qk〉Rdqk we
obtain by the Cauchy-Schwarz inequality∫ ∫ ∣∣[F(ΠKf − f)](t, tx)

∣∣2dx dν(t) =

∫ ∫ ∣∣∣∑
k≥K

〈f, qk〉Rd(Fqk)(t, tx)
∣∣∣2dx dν(t)

≤
(∑
k≥K

〈f, qk〉2Rd

)(∑
k≥K

∫ ∫
|(Fqk)(t, tx)|2dx dν(t)

)
=

∫
(ΠKf − f)2(b) db

∑
k≥K

∫ ∫
|(Fqk)(t, u)|2du dν̃(t)

=

∫
(ΠKf − f)2(b) db

∑
k≥K

∫
|(Fqk)(t)|2dν̃(t),

by the unitary property of the Fourier transform, which completes the proof.
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For the following proofs we require additional notation. Introduce the vector

ψK(Yj, Sj;φ, t) =
(

exp(it(Yj − φ(Sj)))− exp(it(Yj − g(Sj)))
)
p̃K(Xj) (A.1)

with k–th entry denoted by ψk(Yj, Sj;φ, t) and p̃K(·) := P−1/2pK(·). We also in-

troduce the classes of function G = {φ = β′pKd : ‖φ − g‖∞ ≤
√
K/n}, FRk =

{Re(ψk(·;φ, ·)) : φ ∈ G}, and F Ik = {Im(ψk(·;φ, ·)) : φ ∈ G}. Further, N[ ](F , ‖·‖ν,2, ε)
denotes the ‖ · ‖ν,2 :=

√∫
‖ · ‖2

Y S dν covering number with bracketing of a set of func-

tion F . Define the envelope function Ψk(·) = supφ∈G |ψk(·;φ, ·)|, which satisfies

max
1≤k≤K

E
∫
|Ψk(Y, S; t)|2dν(t) ≤ max

1≤k≤K
E
[

sup
φ∈G

∣∣(φ(S)− g(S)
)
p̃k(X)

∣∣2] ∫ t2dν(t)

≤ sup
φ∈G
‖φ− g‖2

∞ max
1≤k≤K

E[p̃2
k(X)]

∫
t2dν(t)

. K/n, (A.2)

using
∫
t2dν(t) . 1 by Assumption 3 (ii). This upper bound is used in the following

proofs.

Proof of Theorem 3.1. The proof is based on the decomposition∫ ∣∣f̂B(b, w)− fB(b, w)
∣∣2db . ∫ ∣∣f̂A(a)− fA(a)

∣∣2da
+

∫ ∣∣fA(a− ĝ(w)
)
− fA

(
a− g(w)

)∣∣2da
.
∫ ∣∣f̂A(a)− ΠKfA(a)

∣∣2da+

∫ ∣∣ΠKfA(a)− fA(a)
∣∣2da

+

∫ ∣∣fA(a− ĝ(w)
)
− fA

(
a− g(w)

)∣∣2da. (A.3)

Consider the first summand on the right hand side. We have

sup
f∈AK

{ ∫
f 2(b)db∫ ∫

|(Ff)(t, tx)|2dν(t) dx

}
. τ−1

K , (A.4)

which is a consequence of the upper bounds imposed in Assumption 3, that is,
λmax(τKQ

−1) . 1 and λmax

( ∫
qK(a)qK(a)′da

)
. 1, since for any f(·) = β′qK(·) it

holds ∫ ∫
|(Ff)(t, tx)|2dν(t) dx = β′

∫ ∫
(FqK)(t, tx)(FqK)(t, tx)′dx dν(t) β

& τK‖β‖2

& τK

∫
f 2(b)db.
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The definition of the estimator f̂A implies∫ ∫ ∣∣∣ĥ(x, t; ĝ)− (F f̂A)(t, tx)
∣∣∣2dν(t) dx

≤
∫ ∫ ∣∣∣ĥ(x, t; ĝ) − (FΠKfA)(t, tx)

∣∣∣2dν(t) dx.

This inequality, the upper bound (A.4), and the definition of the estimator ĥ yield

τK

∫ ∣∣f̂A(a)− ΠKfA(a)
∣∣2da .

∫ ∫ ∣∣∣(F f̂A)(t, tx)− (FΠKfA)(t, tx)
∣∣∣2dν(t) dx

.
∫ ∫ ∣∣∣ĥ(x, t; ĝ)− (FΠKfA)(t, tx)

∣∣∣2dν(t) dx

.
∫ ∫ ∣∣∣(FfA −FΠKfA)(t, tx)

∣∣∣2dν(t) dx︸ ︷︷ ︸
I

+

∫ ∫ ∣∣∣pK(x)′P̂−1 1

n

∑
j

exp
(
it(Yj − g(Sj))

)
pK(Xj)− pK(x)′γ(t)

∣∣∣2dν(t) dx︸ ︷︷ ︸
II

+

∫ ∫ ∣∣∣pK(x)′P̂−1 1

n

∑
j

exp(itYj)p
K(Xj)

(
exp

(
it ĝ(Sj)

)
− exp

(
it g(Sj)

))∣∣∣2dν(t) dx︸ ︷︷ ︸
III

+

∫ ∫ ∣∣∣pK(x)′γ(t)− h(x, t; g)
∣∣∣2dν(t) dx︸ ︷︷ ︸

IV

.

Due to the sieve approximation error of fA in Assumption 4 (i) it holds

I = ‖FΠKfA −FfA‖2
ν = O

(
τK‖ΠKfA − fA‖2

Rd

)
= τKK

−2ζ/d.

In the following, we make use of ‖P̂−1 − P−1‖ = Op(λ
−1
K

√
K log(n)/n), see Belloni

et al. [2015, Lemma 6.2] or Chen and Christensen [2015, Lemma 2.1]. By Assumption
3 (iii), the eigenvalues of

∫
pK(x)pK(x)′dx are bounded from above and thus

II ≤
∥∥∥∫ pK(x)pK(x)′dx

∥∥∥∥∥P̂−1P 1/2
∥∥2

×
∫ ∥∥∥n−1

∑
j

(
exp

(
it(Yj − g(Sj))

)
− pK(Xj)

′γ(t)
)
p̃K(Xj)

∥∥∥2

dν(t)

. λ−1
K

∫ ∥∥∥E [(h(X, t; g)− pK(X)′γ(t)
)
p̃K(X)

]∥∥∥2

dν(t) +Op(K/(nλK))

. λ−1
K

∫
E
∣∣h(X, t; g)− pK(X)′γ(t)

∣∣2dν(t) +Op(K/(nλK))

= Op

(
λ−1
K K−2ρ/(d−1) +K/(nλK)

)
,

making use of the sieve approximation condition imposed on Assumption 4 (i). Con-
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sider III. Due to Assumption 4 (iii) we may assume ĝ ∈ G, which implies

III .
∫ ∫

sup
φ∈G

∣∣∣pK(x)′P̂−1P 1/2n−1
∑
j

ψK(Yj, Sj;φ, t)
∣∣∣2dν(t)dx

by using the definition of ψK as given in (A.1). Applying Theorem 2.14.5 of van der
Vaart and Wellner [2000] together with the upper bound for the envelope function
(A.2) yields

K∑
k=1

∫
E sup
φ∈G

∣∣∣n−1
∑
j

ψk(Yj, Sj;φ, t)− Eψk(Y, S;φ, t)
∣∣∣2dν(t)

.
1

n

K∑
k=1

(∫
E sup
φ∈G

∣∣∣n−1/2
∑
j

ψk(Yj, Sj;φ, t)− Eψk(Y, S;φ, t)
∣∣∣dν(t)

√
K

n
+

√
K

n

)2

.
1

n

K∑
k=1

(∫ 1

0

√
1 + logN[ ](FRk , ‖ · ‖ν,2, ε)dε

√
K

n

+

∫ 1

0

√
1 + logN[ ](F Ik , ‖ · ‖ν,2, ε)dε

√
K

n
+

√
K

n

)2

where the second upper bound is due to the last display of Theorem 2.14.2 of van der
Vaart and Wellner [2000]. The upper bound of the envelope function in inequality
(A.2) (implying local uniform ‖ · ‖ν,2 continuity of ψk(·;φ, ·) with respect to φ ∈ G)
together with Lemma 4.2 of Chen [2007] yields

logN[ ](FRk , ‖ · ‖ν,2, ε) ≤ logN
(
G, ‖ · ‖S, ε/4

)
. (A.5)

Using Assumption 4 (iv) we thus obtain the rate K/n. Further, from the inequality
λmax(P−1/2

∫
pK(x)pK(x)′dxP−1/2) . λ−1

K we infer∫ ∫
sup
φ∈G

∣∣∣pK(x)′P−1/2 EψK(Y, S;φ, t)
∣∣∣2dν(t)dx

. λ−1
K

∫
sup
φ∈G

E
∣∣∣ exp(it(Y − φ(S)))− exp(it(Y − g(S)))

∣∣∣2dν(t)

. λ−1
K sup

φ∈G
‖φ− g‖2

S

∫
t2dν(t)

= op
(
K/(nλK)

)
,

using E | exp(it(Y − φ(S)))− exp(it(Y − g(S)))|2 ≤ t2‖φ− g‖2
S and

∫
t2dν(t) . 1 by

Assumption 3 (ii). Moreover, by Assumption 4 we have the sieve approximation bias

IV = ‖h− γ′pK‖2
ν . K−2ρ/(d−1).
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In what follows, Df denotes the Jacobian matrix of a function f . Finally, we consider∫ ∣∣fA(b− ĝ(w))− fA(b− g(w))
∣∣2db

=

∫ ∥∥∥∫ 1

0

DfA

(
b− u ĝ(w) + (u− 1)g(w)

)
du
∥∥∥2

db
∥∥ĝ(w)− g(w)

∥∥2

Continuity of DfA and consistency of ĝ implies∫ ∥∥∥∫ 1

0

DfA

(
b− u ĝ(w) + (u− 1)g(w)

)
du
∥∥∥2

db =

∫
‖DfA(a)‖2da+ op(1)

. 1 + op(1).

The result follows due to the rate restriction imposed in Assumption 4 (iii).

Proof of Theorem 3.2. We make use of the notation β =
∫
qK(a)fA1(a)da where

qK(t, u) = qK0(t) ⊗ qK1(u). In light of the main decomposition (A.3) in the proof of
Theorem 3.1 it is sufficient to consider∫

|f̂A1(a)− fA1(a)|2da

.
∥∥∥∫ ∫ bK0(t)q̃

K1(−tx)ĥ(x, t; ĝ)dν(t) dx−
∫
β′(qK0(a0)⊗ IK1)da0

∥∥∥2

+

∫ ∣∣∣ ∫ β′(qK0(a0)⊗ qK1(a1))− fA(a0, a1)da0

∣∣∣2da1

.
∥∥∥Q−1

∫ ∫ (
q̃K0(−t)⊗ q̃K1(−tx)

)
ĥ(x, t; ĝ)dν(t) dx− β

∥∥∥2

+

∫ ∣∣β′(qK0(a0)⊗ qK1(a1))− fA(a0, a1)
∣∣2d(a0, a1),

using the notation bK0(t) =
∫
qK0(a)′Q−1

0 q̃K0(−t)da and Lemma 3.1, that is, Q−1 =

Q−1
0 ⊗IK1 . Since

∫
|β′qK(a)−fA(a)|2da = O(K

−2ζ/(d−1)
1 ) due to condition K0 = O(1),

we only need to bound the first term on the right hand side. We further observe

β =

∫
qK(a)fA(a) d(a)

= Q−1

∫ ∫
q̃K(−t,−tx)(FfA)(t, tx)dν(t) dx

= Q−1

∫ ∫
q̃K(−t,−tx)h(x, t; g)dν(t) dx.

Therefore, it is sufficient to show∥∥∥Q−1
1

∫ ∫
q̃K(−t,−tx)

(
ĥ(x, t; ĝ)− h(x, t; g)

)
dν(t) dx

∥∥∥2

= Op

(
K1/(nλK1)

)
.

This upper bound follows immediately from the proof of Theorem 3.1 by using that
K1 is the dimension of basis functions used for the estimator ĥ and that K0 = O(1),
which completes the proof.

Proof of Theorem 3.3. To simplify notation, let s := Q−1/2`
(
qK(· − g(w))

)
.
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Making use of Assumption 5 (i), we obtain the following lower bound for the sieve
variance

vK(w) = s′Σ s & λ−1
K ‖s‖

2

which is used throughout this proof. The proof is based on the decomposition

`
(
f̂B(·, w)

)
− `
(
fB(·, w)

)
= `
(
f̂A(· − ĝ(w))

)
− `
(
f̂A(· − g(w))

)︸ ︷︷ ︸
I

+ s′Q−1/2

∫ ∫
(FqK)(−t,−tx)

(
ĥ(x, t; ĝ)− ĥ(x, t; g)

)
dν(t)dx︸ ︷︷ ︸

II

+ s′Q−1/2

∫ ∫
(FqK)(−t,−tx)

(
ĥ(x, t; g)− pK(x)′γ(t)

)
dν(t)dx︸ ︷︷ ︸

III

+ s′Q−1/2

∫ ∫
(FqK)(−t,−tx)

(
pK(x)′γ(t)− h(x, t; g)

)
dν(t)dx︸ ︷︷ ︸

IV

+ s′Q−1/2

∫ ∫
(FqK)(−t,−tx)(FfA)(t, tx)dν(t)dx− `

(
fB(·, w)

)
︸ ︷︷ ︸

V

,

where we evaluate each summand separately in the following. By Assumption 5 (iv)
the basis functions ql are continuously differentiable and thus

√
n I ≤

√
n
∥∥∥`(∫ 1

0

Df̂A
(
· −u ĝ(w) + (u− 1)g(w)

)
du
)∥∥∥∥∥ĝ(w)− g(w)

∥∥
= op

(√
vK(w)

)
using that n‖ĝ(w)− g(w)‖2 = op

(
vK(w)

)
, consistency of f̂A, and Assumption 4 (ii).

To bound II, make use of the definition of ψK as given in (A.1) to obtain

√
n II

= s′
∫
R(t)P̂−1 1√

n

∑
j

exp
(
itYj)

(
exp

(
− itĝ(Sj)

)
− exp

(
− itg(Sj)

))
pK(Xj)dν(t)

.
∫

sup
φ∈G

∣∣∣s′R(t)P̂−1P 1/2 1√
n

∑
j

ψK(Yj, Sj;φ, t)
∣∣∣dν(t)

.
(∫ ∥∥∥s′R(t)P−1/2

∥∥∥2

dν(t)
)1/2

×
(∫

sup
φ∈G

∥∥∥ 1√
n

∑
j

(
ψK(Yj, Sj;φ, t)− EψK(Y, S;φ, t)

)∥∥∥2

dν(t)
)1/2

+
√
n

∫
sup
φ∈G

∣∣∣s′R(t)P−1/2 EψK(Y, S;φ, t)
∣∣∣dν(t) + op(1).
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Assumption
∫
‖R(t)‖2dν(t) = O(1) implies∫ ∥∥∥s′R(t)P−1/2

∥∥∥2

dν(t) ≤ ‖s‖2

∫
‖R(t)‖2dν(t)‖P−1/2‖2

. vK(w).

Making use of the upper bound (A.2) for the envelope function of FRk and F Ik and
applying Theorem 2.14.5 of van der Vaart and Wellner [2000] yields

K∑
l=1

∫
E sup
φ∈G

∣∣∣n−1/2
∑
j

ψl(Yj, Sj;φ, t)− Eψl(Y, S;φ, t)
∣∣∣2dν(t)

.
K∑
l=1

(∫
E sup
φ∈G

∣∣∣n−1/2
∑
j

ψl(Yj, Sj;φ, t)− Eψl(Y, S;φ, t)
∣∣∣dν(t)

√
K/n

+
√
K/n

)2

.
K

n

K∑
k=1

(∫ 1

0

√
1 + logN[ ](FRk , ‖ · ‖ν,2, ε)dε

+

∫ 1

0

√
1 + logN[ ](F Ik , ‖ · ‖ν,2, ε)dε+ 1

)2

. C2
nK

2/n

due to inequality (A.5) and Assumption 4 (iv). Further, we have∫
E sup
φ∈G

∣∣∣s′R(t)P−1/2 EψK(Y, S;φ, t)
∣∣∣dν(t)

= sup
φ∈G
‖φ− g‖S‖s‖

(∫
‖R(t)‖2dν(t)

)1/2

‖P−1/2‖

.
√

vK(w)K/n.

Consequently, the rate restriction imposed on K implies
√
nII = o(

√
vK(w)). Con-

sider III. Note that P̂ γ(t) = n−1
∑

j h(Xj, t, g)pK(Xj) and consequently we obtain
by the definition of R(t) that

√
n III = s′

∫
R(t) P̂−1 1√

n

∑
j

(
exp(it(Yj − g(Sj)))p

K(Xj)− P̂ γ(t)
)
dν(t)

+ op(1)

= s′
∫
R(t)P−1 1√

n

∑
j

ρj(t)p
K(Xj)dν(t) + op(1),

where ρj(t) = exp(it(Yj − g(Sj)))− h(Xj, t, g). Consequently, we obtain√
n/vK(w) III =

∑
j

(
n vK(w)

)−1/2
s′
∫
R(t)ρj(t)dν(t)P−1pK(Xj)︸ ︷︷ ︸

ζj

+op(1).
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We show
∑

j ζj
d→ N (0, 1) by the Lindeberg-Feller theorem. We see below that ζj,

1 ≤ j ≤ n satisfy Lindeberg’s condition. It holds E[ζj] = 0 and nE[ζ2
j ] = 1. Using

the lower bound for the sieve variance, for ε > 0 we observe∑
j

E[ζ2
j 1{|ζj| > ε}] ≤ nε2 E |ζj/ε|4

≤ vK(w)−2n−1ε−2‖s‖4 E
∥∥∫ R(t)ρ(t)dν(t)P−1pK(X)

∥∥4

. n−1λ2
K

(∫
‖R(t)‖2dν(t)

)2

E
[( ∫

|ρ(t)|2dν(t)
)2∥∥P−1pK(X)

∥∥2
]

× sup
x

∥∥P−1pK(x)
∥∥2

. n−1λ−1
K K2

= o(1),

by the rate condition K2 = o(nλK) imposed in Assumption 5. Consider IV . Using
the notation q̌K(t, tx) = Q−1/2(FqK)(t, tx) and linearity of the Fourier transform we
obtain

IV = s′Q−1/2

∫ ∫
(FqK)(t, tx)

(
pK(x)′γ(t)− h(x, t; g)

)
dν(t)dx

=
K∑
l=1

`
(

(F−1q̌l)(· − g(w))
)
〈q̌l, γ′pK − h〉ν

. `
(
[F−1(γ′pK − h)](· − g(w))

)
= o
(√

vK(w)/n
)
,

by Assumption 5 (iii). Consider V . By Assumption 5 (iv) the sieve space AK is linear
and thus, it holds

V = s′Q−1/2

∫ ∫
(FqK)(t, tx)(FfA)(t, tx)dν(t) dx− `

(
fB(·, w)

)
= s′Q−1/2

∫ ∫
(FqK)(t, tx)[F(fA − ΠKfA)](t, tx)dν(t) dx︸ ︷︷ ︸

=0

+ `
(
ΠKfA(· − g(w))− fA(· − g(w))

)
= o
(√

vK(w)/n
)
,

by Assumption 5 (iii). Due to Lemma B.1, equation (B.1), the asymptotic distribution
result remains valid as vK(w) is replaced by v̂K(w), which completes the proof.

Proof of Theorem 3.4. Due to the Chen and Christensen [2018, Proof of Theo-
rem 4.1] it is sufficient to show∣∣∣√n/v̂K(b, w)

(
f̂B(b, w)− fB(b, w)

)
− Z(b, w)

∣∣∣ = op(rn)

since then the result follows by the anti-concentration inequality of Chernozhukov
et al. [2014, Theorem 2.1]. Along the proof the inequality vK(b, w) & λ−1

K ‖Q−1/2qK(b−
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g(w))‖2. Let Zn = {(Y1, X1,W1), . . . , (Yn, Xn,Wn)}. We may assume that g(w)
is known. Otherwise, consider some subset C ′ ⊂ C where by employing consis-
tency of the vector valued function ĝ we may assume that {b− ĝ(w) : b ∈ C} ⊂
{b− g(w) : b ∈ C ′}. For simplicity of notation we assume in the following that g(w) =
0.
Step 1. We start by showing that

√
n/v̂K(b, w)

(
f̂B(b, w)−fB(b, w)

)
can be uniformly

approximated by the process

Ẑ(b, w) =
qK(b)′Q−1/2√

vK(b, w)

(
1√
n

∑
j

∫
R(t)P−1pK(Xj)ρj(t)dν(t)

)
,

using the notation ρj(t) = exp(it(Yj − g(Sj)))− h(Xj, t, g). We observe∣∣∣√n/v̂K(b, w)
(
f̂B(b, w)− fB(b, w)

)
− Ẑ(b, w)

∣∣∣
≤

∣∣∣∣∣
√
nqK(b)′Q−1√
vK(b, w)

∫ ∫
(FqK)(t, tx)

(
ĥ(x, t, g)− pK(x)′γ(t)

)
dν(t)dx− Ẑ(b, w)

∣∣∣∣∣︸ ︷︷ ︸
I(b)

+

∣∣∣∣∣
√

vK(b, w)

v̂K(b, w)
− 1

∣∣∣∣∣
( ∣∣∣∣∣
√
nqK(b)′Q−1√
vK(b, w)

∫ ∫
(FqK)(t, tx)

(
ĥ(x, t, g)− pK(x)′γ(t)

)
dν(t)dx

∣∣∣∣∣︸ ︷︷ ︸
II(b)

+

∣∣∣∣∣
√
nqK(b)′Q−1√
vK(b, w)

∫ ∫
(FqK)(t, tx)

(
ĥ(x, t, ĝ)− ĥ(x, t, g)

)
dν(t)dx

∣∣∣∣∣︸ ︷︷ ︸
III(b)

+

∣∣∣∣∣
√
nqK(b)′Q−1√
vK(b, w)

∫ ∫
(FqK)(t, tx)

(
pK(x)′γ(t)− h(x, t, g)

)
dν(t)dx

∣∣∣∣∣︸ ︷︷ ︸
IV (b)

+

∣∣∣∣∣
√
n√

vK(b, w)

(
qK(b)′Q−1

∫ ∫
(FqK)(t, tx)h(x, t, g)dν(t)dx− fB(b, w)

)∣∣∣∣∣︸ ︷︷ ︸
V (b)

)
.

We have ‖P−1/2P̂P−1/2 − IK‖ = Op(
√
K log(n)/(nλK)), see Chen and Christensen

[2015, Lemma 2.1]. Further, we obtain

sup
b∈C

I(b) = sup
b∈C

∣∣∣∣∣qK(b)′Q−1/2√
vK(b, w)

1√
n

∑
j

∫
R(t)ρj(t)dν(t)

(
P̂−1 − P−1

)
pK(Xj)

∣∣∣∣∣
≤ λK

∥∥∥ 1√
n

∑
j

∫
R(t)ρj(t)dν(t)P̂−1P 1/2

(
P−1/2P̂P−1/2 − IK

)
p̃K(Xj)

∥∥∥
= Op(λ

−1
K K

√
log(n)/n).
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Define the process Z(b, w) = qK(b)′Q−1/2Z/
√

vK(b, w). We have

sup
b∈C

II(b) ≤ sup
b∈C

I(b) + sup
b∈C
|Ẑ(b, w)|

= Op

(
λ−1
K K

√
log(n)/n

)
+ sup

b∈C

∣∣Ẑ(b, w)− Z(b, w)
∣∣+ sup

b∈C
|Z(b, w)|

= Op

(
λ−1
K K

√
log(n)/n

)
+ op(rn) + sup

b∈C
|Z(b, w)|

= op(rn) +Op(cn).

where the third bound is due to step 2 below and the last equality is because of
the condition K5/2 = o(λ2

Kr
3
n

√
n) and by Chen and Christensen [2018, Lemma G.5],

which is valid under our assumptions and which implies supb∈C |Z(b, w)| = Op(cn).
Consider III(b). Using the definition of ψK as given in (A.1) we obtain

sup
b∈C

√
n |III(b)|√
vK(b, w)

= sup
b∈C

‖qK(b)′Q−1/2‖√
vK(b, w)

∫
sup
φ∈G

∥∥∥R(t)P−1 1√
n

∑
j

ψK(Yj, Sj;φ, t)
∥∥∥dν(t)

+ op(λ
−1
K K

√
log(n)/n)

= op(λ
−1
K K

√
log(n)/n)

following the proof of Theorem 3.3. Moreover, we observe

sup
b∈C

√
n |IV (b)|√
vK(b, w)

≤ sup
b∈C

√
n‖qK(b)′Q−1/2‖√

vK(b, w)

∥∥∥Q−1/2

∫ ∫
(FqK)(t, tx)

(
pK(x)′γ(t)− h(x, t; g)

)
dν(t)dx

∥∥∥
. ‖γ′pK − h‖ν
. O(K−ρ/(d−1))

by Assumption 4 (i). For the last summand we note

sup
b∈C

√
n |V (b)|√
vK(b, w)

≤ sup
b∈C

√
n√

vK(b, w)

∣∣ΠKfB(b, w)− fB(b, w)
∣∣.

Consequently, Lemma B.1, i.e., supb∈C

∣∣∣√vK(b, w)/v̂K(b, w)− 1
∣∣∣ = Op(

√
ζn) and the

rate requirement in Assumption 7 (iii) imply∣∣∣√n/v̂K(b, w)
(
f̂B(b, w)− fB(b, w)

)
− Ẑ(b, w)

∣∣∣ = op(rn).
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Step 2. Assumption
∫
‖R(t)‖2dν(t) = O(1) implies

∑
j

E
∥∥∥∥ 1√

n

∫
R(t)P−1pK(Xj)ρj(t)dν(t)

∥∥∥∥3

.
1√
n

(∫
‖R(t)‖2dν(t)

)3/2

E ‖P−1pK(X)‖3

.
K3/2

√
nλ2

K

.

Further, recall that rn is a sequence satisfying

K5/2

λ2
Kr

3
n

√
n

= o(1).

Hence we may apply Yurinskii’s coupling (Pollard [2002, Theorem 10]) and conse-
quently, there exists a sequence of N (0,Σ) distributed random vectors Z such that

∥∥∥∥ 1√
n

∫
R(t)P−1pK(Xj)ρj(t)dν(t)−Z

∥∥∥∥ = op(rn). (A.6)

Recall the definition Z(b, w) = qK(b)′Q−1/2Z/
√

vK(b, w), which is a centered Gaus-
sian process with covariance function

E[Z(b1, w)Z(b2, w)] = qK(b1)′Q−1/2 ΣQ−1/2qK(b2)
/√

vK(b1, w)vK(b2, w).

Hence, by equation (A.6) we have

sup
b∈C

∣∣∣Ẑ(b, w)− Z(b, w)
∣∣∣ = op(rn). (A.7)

Step 3. In this step we approximate the bootstrap process by a Gaussian pro-
cess. Under the bootstrap distribution P∗ each term

∫
R(t)P−1pK(Xj)ρ̂j(t)dν(t)εj

has mean zero for all 1 ≤ j ≤ n. Moreover, we have

1

n

∑
j

E
[∫ ∫

R(s)P̂−1pK(Xj)ρ̂j(s)ε
2
j ρ̂j(−t)pK(Xj)

′P̂−1R(−t)′dν(s)dν(t)

∣∣∣∣Zn

]
= Σ̂.

Since E[|εj|3|Zn] <∞ uniformly in j, we have

∑
j

E

[∥∥∥∥ 1√
n

∫
R(t)P−1pK(Xj)ρ̂j(t)dν(t)εj

∥∥∥∥3
∣∣∣∣∣Zn

]

.
1√
n

(∫
‖R(t)‖2dν(t)

)3/2

E ‖P−1pK(X)‖2 sup
x
‖pK(x)‖

= O

(
K3/2

√
nλ2

K

)
.

Again using Pollard [2002, Theorem 10], conditional on the data Zn, implies existence
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of a N (0, Σ̂) distributed random vectors Z∗ such that∥∥∥∥∥ 1√
n

∑
i

∫
R(t)P−1pK(Xj)ρ̂j(t)dν(t)−Z∗

∥∥∥∥∥ = op∗(rn)

wpa1. Therefore,

sup
a∈C

∣∣∣∣∣Z∗(b, w)− qK(b)′Q−1/2√
v̂K(b, w)

Z∗
∣∣∣∣∣ = op∗(rn)

wpa1. Define a centered Gaussian process Z̃(·, w) under P∗ as

Z̃(b, w) = qK(b)′Q−1/2Σ1/2Σ̂−1/2Z∗/
√
vK(b, w)

which has the same covariance function as Z(b, w). By Lemma B.2 below we have:

sup
b∈C

∣∣∣∣∣qK(b)′Q−1/2√
v̂K(b, w)

Z∗ − Z̃(b, w)

∣∣∣∣∣ = op∗(rn)

wpa1. This and the previous rate of convergence imply that

sup
b∈C

∣∣∣Z∗(b, w)− Z̃(b, w)
∣∣∣ = op∗(rn)

wpa1, which completes the proof.

B. Technical Assertions

For the next result and the proof of it, recall the notation s = Q−1/2`
(
qK(· − g(w))

)
and let ŝ := Q−1/2`

(
qK(· − ĝ(w))

)
.

Lemma B.1. Let Assumptions 5–7 be satisfied. Then,

∣∣∣√ v̂K(w)

vK(w)
− 1
∣∣∣ = op(1), (B.1)

sup
b∈C

∣∣∣√ v̂K(b, w)

vK(b, w)
− 1
∣∣∣ = Op

(√
(nλKτK)−1/2K1/2 log(n) +K1/2−ρ/(d−1)

)
. (B.2)

Proof. Proof of (B.1). We make use of the decomposition

v̂K(w)− vK(w) = s′
(
Σ̂− Σ

)
s +

(
ŝ− s

)′
Σ̂
(
ŝ + s

)
. (B.3)

We make use of the notation

Σ̃ =

∫
R

∫
R
R(s)P−1 1

n

n∑
j=1

pK(Xj)ρj(s)ρj(−t)pK(Xj)
′P−1R(−t)′dν(s)dν(t)

and we may replace P̂ by P in the definition of Σ̂. Also recall the definition ρ̂j(t) =
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exp(it(Yj − ĝ(Sj)))− ĥ(Xj, t, ĝ). We make use of of the following decomposition

ρ̂j(s)ρ̂j(t)− ρj(s)ρj(t)
=
(
ρ̂j(s)− ρj(s)

)(
ρ̂j(t)− ρj(t)

)
+ ρj(s)

(
ρ̂j(t)− ρj(t)

)
+ ρj(t)

(
ρ̂j(s)− ρj(s)

)
and hence calculate

|s′(Σ̂− Σ̃)s|

≤
∣∣∣s′ ∫ ∫ R(s)P−1 1

n

∑
j

pK(Xj)
(
ρ̂j(s)ρ̂j(t)− ρj(s)ρj(t)

)
pK(Xj)

′P−1R(t)
′
dν(s)dν(t)s

∣∣∣
≤ n−1

∑
j

∣∣∣s′ ∫ R(t)P−1
(
ρ̂j(t)− ρj(t)

)
dν(t)pK(Xj)

∣∣∣2︸ ︷︷ ︸
I

+ 2
∣∣∣s′ ∫ ∫ R(s)P−1 1

n

∑
j

pK(Xj)
(
ρ̂j(s)− ρj(s)

)
ρj(t)p

K(Xj)
′P−1R(t)

′
dν(s)dν(t)s

∣∣∣︸ ︷︷ ︸
II

.

For the first summand we evaluate using the definition of ψK in equation (A.1) and
the Cauchy-Schwarz inequality that

I .
∫

E
∥∥s′R(t)P−1pK(X)

∥∥2
dν(t) ‖ĝ − g‖2

∞

∫
t2dν(t)

+

∫ ∥∥∥s′R(t)P−1/2
∥∥∥2

dν(t)

×
(∫

sup
φ∈G

∥∥∥n−1
∑
j

ψK(Yj, Sj;φ, t)− EψK(Y, S;φ, t)
∥∥∥2

dν(t)

+

∫
sup
φ∈G

∥∥EψK(Y, S;φ, t)
∥∥2
dν(t)

+ sup
x
‖pK(x)‖2 n−1

∑
j

∫ ∣∣pK(Xj)
′γ(t)− h(Xj, t, g)

∣∣2dν(t)
)

+ op(K/(nλK))

= Op

(
‖s‖2λ−1

K

(
n−1K + n−1K log(n) +K1−2ρ/(d−1)

))
,

following the proof of Theorem 3.3 and using that∫
E
∥∥s′R(t)P−1pK(X)

∥∥2
dν(t) = s′

∫
R(t)P−1R(−t)dν(t) s

≤ λ−1
K ‖s‖

2.

Again following the proof of Theorem 3.3 and making use of the Cauchy-Schwarz
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inequality yields

II ≤
√
I ×

√
n−1

∑
j

∣∣∣s′ ∫ R(t)P−1ρj(t)dν(t)pK(Xj)dν(t)
∣∣∣2

≤
√
I ×

√
n−1

∑
j

∫ ∣∣∣s′R(t)P−1pK(Xj)
∣∣∣2dν(t)

≤
√
I ×Op

(
λ
−1/2
K ‖s‖

)
= Op

(
‖s‖2λ−1

K (n−1/2K1/2 log(n) +K1/2−ρ/(d−1))
)

using the upper bound of I. Finally, we obtain

s′(Σ̃− Σ)s = Op

(
‖s‖2

√
K/(nλK)

)
which is due to the following calculation

E ‖Σ̃− Σ‖2

= E
∥∥∥∫ ∫ R(s)P−1 1

n

∑
j

(
pK(Xj)ρj(s)ρj(t)p

K(Xj)
′ − E

[
pK(X)ρ(s)ρ(t)pK(X)′

])
× P−1R(t)

′
dν(s)dν(t)

∥∥∥2

≤ n−1 E
∥∥∥∫ R(t)P−1pK(X)ρ(t)dν(t)

∥∥∥4

≤ n−1

∫ ∥∥R(t)P−1/2
∥∥4
dν(t)E

∥∥P−1/2pK(X)‖2

. n−1K/λK .

For the second summand on the right hand side of (B.3) we observe(
ŝ− s

)′
Σ̂
(
ŝ + s

)
=
(
ŝ− s

)′
Σ̂
(
ŝ− s

)
+ 2
(
ŝ− s

)′
Σ̂ s

In light of the upper bounds for I and II it is sufficient to bound
(
ŝ − s

)′
Σ
(
ŝ − s

)
and

(
ŝ− s

)′
Σ s. Note that(

ŝ− s
)′

Σ
(
ŝ− s

)
≤ ‖ŝ− s‖2

≤ τ−1
K ‖`

(
qK(· − ĝ(w))− qK(· − g(w))

)
‖2

≤ τ−1
K

∥∥∥`(∫ 1

0

DqK(· − uĝ(w) + (u− 1)g(w))du
)∥∥∥2∥∥ĝ(w)− g(w)

∥∥2

= Op

(
K/(nτK)

)
.

and similarly,(
ŝ− s

)′
Σ s ≤ ‖ŝ− s‖‖s‖

= Op

(
‖s‖
√
K/(nτK)

)
.

Consequently, the previous inequalities together with the bound ‖s‖2/vK(w) ≤ λK
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(due to Assumption 5 (i)) and λ
−1/2
K .

√
vK(w) imply

v̂K(w)

vK(w)
− 1 = Op

(
n−1/2K1/2 log(n) +K1/2−ρ/(d−1) +

√
K/(nτKλK)

)
,

which, due to the rate condition imposed in Assumption 6 implies bound (B.1). The
result (B.2) follows analogously.

Lemma B.2. Let Assumptions 5–7 be satisfied. Then,

sup
b∈C

∣∣∣∣∣qK(b)′Q−1/2√
v̂K(b, w)

Z∗ − Z̃(b, w)

∣∣∣∣∣ = op∗(rn)

with probability approaching one.

Proof. The proof of this lemma follows the proof of Chen and Christensen [2018,
Lemma G.6] and so we provide only the main parts where the two proofs differ. We
make the decomposition

sup
b∈C

∣∣∣∣∣qK(b)′Q−1/2√
v̂K(b, w)

Z∗ − Z̃(b, w)

∣∣∣∣∣
≤ sup

b∈C

∣∣∣∣∣∣
qK(b)′Q−1/2

(
IK − Σ1/2Σ̂−1/2

)
√
vK(b, w)

Z∗
∣∣∣∣∣∣ sup
b∈C

√
vK(b, w)

v̂K(b, w)︸ ︷︷ ︸
I

+ sup
b∈C

∣∣∣∣∣
√

vK(b, w)

v̂K(b, w)
− 1

∣∣∣∣∣ sup
b∈C

∣∣∣∣∣qK(b)′Q−1/2√
vK(b, w)

Σ1/2Σ̂−1/2Z∗
∣∣∣∣∣︸ ︷︷ ︸

II

.

Let ∆̃w denote the standard deviation semimetric on C associated with the Gaussian
process (under P∗) vK(b, w)−1/2qK(b)′Q−1/2

(
IK − Σ1/2Σ̂−1/2

)
Z∗ and defined as

∆̃w(b1, b2)2 = E∗
(( qK(b1)√

vK(b1, w)
− qK(b2)√

vK(b2, w)

)′
Q−1/2

(
IK − Σ1/2Σ̂−1/2

)
Z∗
)2
 .

We observe ∆̃w(b1, b2) ≤ ∆w(b1, b2)‖Σ−1/2Σ̂1/2 − IK‖ and

‖Σ−1/2Σ̂1/2 − IK‖ ≤ ‖Σ̂1/2 − Σ1/2‖ ‖Σ−1/2‖
≤ (λ

1/2
min(Σ) + λ

1/2
min(Σ̂))−1‖Σ̂− Σ‖

= Op(
√
ηn).

where the last bound is due to the proof of Lemma B.1. Thus, following line by line the
proof of Chen and Christensen [2018, Lemma G.6] we obtain that I = op∗(rn) under
Assumption 7. Next, let us consider term II which is the supremum of a Gaussian
process with the same distribution (under P∗) as Z(b, w). Therefore, by applying
Lemma B.1 and Chen and Christensen [2018, Lemma G.5] we obtain II = op∗(rn).
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